Documentation

Mathlib.Topology.Algebra.ContinuousAffineMap

Continuous affine maps. #

This file defines a type of bundled continuous affine maps.

Main definitions: #

Notation: #

We introduce the notation P →ᴬ[R] Q for ContinuousAffineMap R P Q (not to be confused with the notation A →A[R] B for ContinuousAlgHom). Note that this is parallel to the notation E →L[R] F for ContinuousLinearMap R E F.

structure ContinuousAffineMap (R : Type u_1) {V : Type u_2} {W : Type u_3} (P : Type u_4) (Q : Type u_5) [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] extends P →ᵃ[R] Q :
Type (max (max (max u_2 u_3) u_4) u_5)

A continuous map of affine spaces

Instances For

    A continuous map of affine spaces

    Equations
      Instances For
        instance ContinuousAffineMap.instCoeAffineMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] :
        Coe (P →ᴬ[R] Q) (P →ᵃ[R] Q)
        Equations
          theorem ContinuousAffineMap.toAffineMap_injective {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {f g : P →ᴬ[R] Q} (h : f = g) :
          f = g
          instance ContinuousAffineMap.instFunLike {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] :
          FunLike (P →ᴬ[R] Q) P Q
          Equations
            instance ContinuousAffineMap.instContinuousMapClass {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] :
            theorem ContinuousAffineMap.toFun_eq_coe {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
            (↑f).toFun = f
            theorem ContinuousAffineMap.ext {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {f g : P →ᴬ[R] Q} (h : ∀ (x : P), f x = g x) :
            f = g
            theorem ContinuousAffineMap.ext_iff {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {f g : P →ᴬ[R] Q} :
            f = g ∀ (x : P), f x = g x
            theorem ContinuousAffineMap.congr_fun {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {f g : P →ᴬ[R] Q} (h : f = g) (x : P) :
            f x = g x
            def ContinuousAffineMap.toContinuousMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
            C(P, Q)

            Forgetting its algebraic properties, a continuous affine map is a continuous map.

            Equations
              Instances For
                instance ContinuousAffineMap.instCoeHeadContinuousMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] :
                Equations
                  @[simp]
                  theorem ContinuousAffineMap.toContinuousMap_coe {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
                  @[simp]
                  theorem ContinuousAffineMap.coe_toAffineMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
                  f = f
                  @[simp]
                  theorem ContinuousAffineMap.coe_to_continuousMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
                  f = f
                  theorem ContinuousAffineMap.to_continuousMap_injective {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {f g : P →ᴬ[R] Q} (h : f = g) :
                  f = g
                  theorem ContinuousAffineMap.coe_toAffineMap_mk {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᵃ[R] Q) (h : Continuous f.toFun) :
                  { toAffineMap := f, cont := h } = f
                  theorem ContinuousAffineMap.coe_continuousMap_mk {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᵃ[R] Q) (h : Continuous f.toFun) :
                  { toAffineMap := f, cont := h } = { toFun := f, continuous_toFun := h }
                  @[simp]
                  theorem ContinuousAffineMap.coe_mk {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᵃ[R] Q) (h : Continuous f.toFun) :
                  { toAffineMap := f, cont := h } = f
                  @[simp]
                  theorem ContinuousAffineMap.mk_coe {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) (h : Continuous (↑f).toFun) :
                  { toAffineMap := f, cont := h } = f
                  theorem ContinuousAffineMap.continuous {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
                  def ContinuousAffineMap.const (R : Type u_1) {V : Type u_2} {W : Type u_3} (P : Type u_4) {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (q : Q) :

                  The constant map as a continuous affine map

                  Equations
                    Instances For
                      @[simp]
                      theorem ContinuousAffineMap.coe_const (R : Type u_1) {V : Type u_2} {W : Type u_3} (P : Type u_4) {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (q : Q) :
                      (const R P q) = Function.const P q
                      noncomputable instance ContinuousAffineMap.instInhabited (R : Type u_1) {V : Type u_2} {W : Type u_3} (P : Type u_4) {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] :
                      Equations
                        def ContinuousAffineMap.id (R : Type u_1) {V : Type u_2} (P : Type u_4) [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] :

                        The identity map as a continuous affine map

                        Equations
                          Instances For
                            @[simp]
                            theorem ContinuousAffineMap.coe_id (R : Type u_1) {V : Type u_2} (P : Type u_4) [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] :
                            (id R P) = _root_.id
                            def ContinuousAffineMap.comp {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {W₂ : Type u_6} {Q₂ : Type u_7} [AddCommGroup W₂] [Module R W₂] [TopologicalSpace Q₂] [AddTorsor W₂ Q₂] (f : Q →ᴬ[R] Q₂) (g : P →ᴬ[R] Q) :
                            P →ᴬ[R] Q₂

                            The composition of continuous affine maps as a continuous affine map

                            Equations
                              Instances For
                                @[simp]
                                theorem ContinuousAffineMap.coe_comp {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {W₂ : Type u_6} {Q₂ : Type u_7} [AddCommGroup W₂] [Module R W₂] [TopologicalSpace Q₂] [AddTorsor W₂ Q₂] (f : Q →ᴬ[R] Q₂) (g : P →ᴬ[R] Q) :
                                (f.comp g) = f g
                                theorem ContinuousAffineMap.comp_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {W₂ : Type u_6} {Q₂ : Type u_7} [AddCommGroup W₂] [Module R W₂] [TopologicalSpace Q₂] [AddTorsor W₂ Q₂] (f : Q →ᴬ[R] Q₂) (g : P →ᴬ[R] Q) (p : P) :
                                (f.comp g) p = f (g p)
                                @[simp]
                                theorem ContinuousAffineMap.comp_id {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
                                f.comp (id R P) = f
                                @[simp]
                                theorem ContinuousAffineMap.id_comp {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) :
                                (id R Q).comp f = f
                                @[simp]
                                theorem ContinuousAffineMap.apply_lineMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] (f : P →ᴬ[R] Q) (p₀ p₁ : P) (c : R) :
                                f ((AffineMap.lineMap p₀ p₁) c) = (AffineMap.lineMap (f p₀) (f p₁)) c

                                Applying a ContinuousAffineMap commutes with AffineMap.lineMap.

                                def ContinuousAffineMap.lineMap {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] (p₀ p₁ : P) [TopologicalSpace R] [TopologicalSpace V] [ContinuousSMul R V] [ContinuousVAdd V P] :

                                The continuous affine map sending 0 to p₀ and 1 to p₁

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem ContinuousAffineMap.lineMap_toAffineMap {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] (p₀ p₁ : P) [TopologicalSpace R] [TopologicalSpace V] [ContinuousSMul R V] [ContinuousVAdd V P] :
                                    (lineMap p₀ p₁) = AffineMap.lineMap p₀ p₁
                                    theorem ContinuousAffineMap.coe_lineMap_eq {R : Type u_1} {V : Type u_2} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] (p₀ p₁ : P) [TopologicalSpace R] [TopologicalSpace V] [ContinuousSMul R V] [ContinuousVAdd V P] :
                                    (lineMap p₀ p₁) = (AffineMap.lineMap p₀ p₁)
                                    @[simp]
                                    theorem ContinuousAffineMap.apply_lineMap' {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace R] [TopologicalSpace V] [TopologicalSpace W] [ContinuousSMul R V] [ContinuousSMul R W] [ContinuousVAdd V P] [ContinuousVAdd W Q] (f : P →ᴬ[R] Q) (p₀ p₁ : P) (c : R) :
                                    f ((lineMap p₀ p₁) c) = (lineMap (f p₀) (f p₁)) c

                                    Applying a ContinuousAffineMap commutes with ContinuousAffineMap.lineMap.

                                    The linear map underlying a continuous affine map is continuous.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem ContinuousAffineMap.coe_contLinear {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace V] [IsTopologicalAddTorsor P] [TopologicalSpace W] [IsTopologicalAddTorsor Q] (f : P →ᴬ[R] Q) :
                                        f.contLinear = (↑f).linear
                                        @[simp]
                                        theorem ContinuousAffineMap.coe_mk_contLinear_eq_linear {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace V] [IsTopologicalAddTorsor P] [TopologicalSpace W] [IsTopologicalAddTorsor Q] (f : P →ᵃ[R] Q) (h : Continuous f.toFun) :
                                        { toAffineMap := f, cont := h }.contLinear = f.linear
                                        @[deprecated ContinuousAffineMap.coe_mk_contLinear_eq_linear (since := "2025-09-17")]
                                        theorem ContinuousAffineMap.coe_mk_const_linear_eq_linear {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace V] [IsTopologicalAddTorsor P] [TopologicalSpace W] [IsTopologicalAddTorsor Q] (f : P →ᵃ[R] Q) (h : Continuous f.toFun) :
                                        { toAffineMap := f, cont := h }.contLinear = f.linear

                                        Alias of ContinuousAffineMap.coe_mk_contLinear_eq_linear.

                                        @[simp]
                                        theorem ContinuousAffineMap.comp_contLinear {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] {W₂ : Type u_6} {Q₂ : Type u_7} [AddCommGroup W₂] [Module R W₂] [TopologicalSpace Q₂] [AddTorsor W₂ Q₂] [TopologicalSpace V] [IsTopologicalAddTorsor P] [TopologicalSpace W] [IsTopologicalAddTorsor Q] [TopologicalSpace W₂] [IsTopologicalAddTorsor Q₂] (f : P →ᴬ[R] Q) (g : Q →ᴬ[R] Q₂) :
                                        @[simp]
                                        theorem ContinuousAffineMap.map_vadd {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace V] [IsTopologicalAddTorsor P] [TopologicalSpace W] [IsTopologicalAddTorsor Q] (f : P →ᴬ[R] Q) (p : P) (v : V) :
                                        f (v +ᵥ p) = f.contLinear v +ᵥ f p
                                        @[simp]
                                        theorem ContinuousAffineMap.contLinear_map_vsub {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace V] [IsTopologicalAddTorsor P] [TopologicalSpace W] [IsTopologicalAddTorsor Q] (f : P →ᴬ[R] Q) (p₁ p₂ : P) :
                                        f.contLinear (p₁ -ᵥ p₂) = f p₁ -ᵥ f p₂
                                        instance ContinuousAffineMap.instZero {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] :
                                        Zero (P →ᴬ[R] W)
                                        Equations
                                          @[simp]
                                          theorem ContinuousAffineMap.coe_zero {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] :
                                          0 = 0
                                          theorem ContinuousAffineMap.zero_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] (x : P) :
                                          0 x = 0
                                          instance ContinuousAffineMap.instSMul {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] {S : Type u_10} [TopologicalSpace W] [Monoid S] [DistribMulAction S W] [SMulCommClass R S W] [ContinuousConstSMul S W] :
                                          SMul S (P →ᴬ[R] W)
                                          Equations
                                            @[simp]
                                            theorem ContinuousAffineMap.coe_smul {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] {S : Type u_10} [TopologicalSpace W] [Monoid S] [DistribMulAction S W] [SMulCommClass R S W] [ContinuousConstSMul S W] (t : S) (f : P →ᴬ[R] W) :
                                            ⇑(t f) = t f
                                            theorem ContinuousAffineMap.smul_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] {S : Type u_10} [TopologicalSpace W] [Monoid S] [DistribMulAction S W] [SMulCommClass R S W] [ContinuousConstSMul S W] (t : S) (f : P →ᴬ[R] W) (x : P) :
                                            (t f) x = t f x
                                            instance ContinuousAffineMap.instMulAction {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] {S : Type u_10} [TopologicalSpace W] [Monoid S] [DistribMulAction S W] [SMulCommClass R S W] [ContinuousConstSMul S W] :
                                            Equations
                                              instance ContinuousAffineMap.instAdd {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] :
                                              Add (P →ᴬ[R] W)
                                              Equations
                                                @[simp]
                                                theorem ContinuousAffineMap.coe_add {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] (f g : P →ᴬ[R] W) :
                                                ⇑(f + g) = f + g
                                                theorem ContinuousAffineMap.add_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] (f g : P →ᴬ[R] W) (x : P) :
                                                (f + g) x = f x + g x
                                                instance ContinuousAffineMap.instSub {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] :
                                                Sub (P →ᴬ[R] W)
                                                Equations
                                                  @[simp]
                                                  theorem ContinuousAffineMap.coe_sub {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] (f g : P →ᴬ[R] W) :
                                                  ⇑(f - g) = f - g
                                                  theorem ContinuousAffineMap.sub_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] (f g : P →ᴬ[R] W) (x : P) :
                                                  (f - g) x = f x - g x
                                                  instance ContinuousAffineMap.instNeg {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] :
                                                  Neg (P →ᴬ[R] W)
                                                  Equations
                                                    @[simp]
                                                    theorem ContinuousAffineMap.coe_neg {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] (f : P →ᴬ[R] W) :
                                                    ⇑(-f) = -f
                                                    theorem ContinuousAffineMap.neg_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace W] [IsTopologicalAddGroup W] (f : P →ᴬ[R] W) (x : P) :
                                                    (-f) x = -f x

                                                    The space of continuous affine maps from P to Q is an affine space over the space of continuous affine maps from P to W.

                                                    Equations
                                                      @[simp]
                                                      theorem ContinuousAffineMap.vadd_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace W] [IsTopologicalAddGroup W] [IsTopologicalAddTorsor Q] (f : P →ᴬ[R] W) (g : P →ᴬ[R] Q) (p : P) :
                                                      (f +ᵥ g) p = f p +ᵥ g p
                                                      @[simp]
                                                      theorem ContinuousAffineMap.vsub_apply {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace W] [IsTopologicalAddGroup W] [IsTopologicalAddTorsor Q] (f g : P →ᴬ[R] Q) (p : P) :
                                                      (f -ᵥ g) p = f p -ᵥ g p
                                                      @[simp]
                                                      theorem ContinuousAffineMap.vadd_toAffineMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace W] [IsTopologicalAddGroup W] [IsTopologicalAddTorsor Q] (f : P →ᴬ[R] W) (g : P →ᴬ[R] Q) :
                                                      ↑(f +ᵥ g) = f +ᵥ g
                                                      @[simp]
                                                      theorem ContinuousAffineMap.vsub_toAffineMap {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace W] [IsTopologicalAddGroup W] [IsTopologicalAddTorsor Q] (f g : P →ᴬ[R] Q) :
                                                      ↑(f -ᵥ g) = f -ᵥ g
                                                      @[simp]
                                                      theorem ContinuousAffineMap.lineMap_apply' {R : Type u_1} {V : Type u_2} {W : Type u_3} {P : Type u_4} {Q : Type u_5} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace P] [AddTorsor V P] [AddCommGroup W] [Module R W] [TopologicalSpace Q] [AddTorsor W Q] [TopologicalSpace W] [IsTopologicalAddGroup W] [IsTopologicalAddTorsor Q] [ContinuousConstSMul R W] [SMulCommClass R R W] (f g : P →ᴬ[R] Q) (c : R) (p : P) :
                                                      ((AffineMap.lineMap f g) c) p = (AffineMap.lineMap (f p) (g p)) c

                                                      Interpolating between ContinuousAffineMaps with AffineMap.lineMap commutes with evaluation.

                                                      def ContinuousAffineMap.prod {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (f : P₁ →ᴬ[k] P₂) (g : P₁ →ᴬ[k] P₃) :
                                                      P₁ →ᴬ[k] P₂ × P₃

                                                      The product of two continuous affine maps is a continuous affine map.

                                                      Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem ContinuousAffineMap.prod_toAffineMap {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (f : P₁ →ᴬ[k] P₂) (g : P₁ →ᴬ[k] P₃) :
                                                          (f.prod g) = (↑f).prod g
                                                          theorem ContinuousAffineMap.coe_prod {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (f : P₁ →ᴬ[k] P₂) (g : P₁ →ᴬ[k] P₃) :
                                                          (f.prod g) = Pi.prod f g
                                                          @[simp]
                                                          theorem ContinuousAffineMap.prod_apply {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] (f : P₁ →ᴬ[k] P₂) (g : P₁ →ᴬ[k] P₃) (p : P₁) :
                                                          (f.prod g) p = (f p, g p)
                                                          def ContinuousAffineMap.prodMap {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {P₄ : Type u_14} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} {V₄ : Type u_18} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (f : P₁ →ᴬ[k] P₂) (g : P₃ →ᴬ[k] P₄) :
                                                          P₁ × P₃ →ᴬ[k] P₂ × P₄

                                                          Prod.map of two continuous affine maps.

                                                          Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem ContinuousAffineMap.prodMap_toAffineMap {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {P₄ : Type u_14} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} {V₄ : Type u_18} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (f : P₁ →ᴬ[k] P₂) (g : P₃ →ᴬ[k] P₄) :
                                                              (f.prodMap g) = (↑f).prodMap g
                                                              theorem ContinuousAffineMap.coe_prodMap {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {P₄ : Type u_14} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} {V₄ : Type u_18} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (f : P₁ →ᴬ[k] P₂) (g : P₃ →ᴬ[k] P₄) :
                                                              (f.prodMap g) = Prod.map f g
                                                              @[simp]
                                                              theorem ContinuousAffineMap.prodMap_apply {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {P₄ : Type u_14} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} {V₄ : Type u_18} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] (f : P₁ →ᴬ[k] P₂) (g : P₃ →ᴬ[k] P₄) (x : P₁ × P₃) :
                                                              (f.prodMap g) x = (f x.1, g x.2)
                                                              @[simp]
                                                              theorem ContinuousAffineMap.prod_contLinear {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [TopologicalSpace V₁] [IsTopologicalAddTorsor P₁] [TopologicalSpace V₂] [IsTopologicalAddTorsor P₂] [TopologicalSpace V₃] [IsTopologicalAddTorsor P₃] (f : P₁ →ᴬ[k] P₂) (g : P₁ →ᴬ[k] P₃) :
                                                              @[simp]
                                                              theorem ContinuousAffineMap.prodMap_contLinear {k : Type u_10} {P₁ : Type u_11} {P₂ : Type u_12} {P₃ : Type u_13} {P₄ : Type u_14} {V₁ : Type u_15} {V₂ : Type u_16} {V₃ : Type u_17} {V₄ : Type u_18} [Ring k] [AddCommGroup V₁] [Module k V₁] [AddTorsor V₁ P₁] [TopologicalSpace P₁] [AddCommGroup V₂] [Module k V₂] [AddTorsor V₂ P₂] [TopologicalSpace P₂] [AddCommGroup V₃] [Module k V₃] [AddTorsor V₃ P₃] [TopologicalSpace P₃] [AddCommGroup V₄] [Module k V₄] [AddTorsor V₄ P₄] [TopologicalSpace P₄] [TopologicalSpace V₁] [IsTopologicalAddTorsor P₁] [TopologicalSpace V₂] [IsTopologicalAddTorsor P₂] [TopologicalSpace V₃] [IsTopologicalAddTorsor P₃] [TopologicalSpace V₄] [IsTopologicalAddTorsor P₄] (f : P₁ →ᴬ[k] P₂) (g : P₃ →ᴬ[k] P₄) :
                                                              def ContinuousLinearMap.toContinuousAffineMap {R : Type u_1} {V : Type u_2} {W : Type u_3} [Ring R] [AddCommGroup V] [Module R V] [TopologicalSpace V] [AddCommGroup W] [Module R W] [TopologicalSpace W] (f : V →L[R] W) :

                                                              A continuous linear map can be regarded as a continuous affine map.

                                                              Equations
                                                                Instances For
                                                                  @[deprecated ContinuousLinearMap.toContinuousAffineMap_contLinear (since := "2025-09-23")]

                                                                  Alias of ContinuousLinearMap.toContinuousAffineMap_contLinear.