Documentation Verification Report

ContinuousAffineMap

πŸ“ Source: Mathlib/Topology/Algebra/ContinuousAffineMap.lean

Statistics

MetricCount
DefinitionsContinuousAffineMap, comp, const, contLinear, id, instAdd, instAddCommGroup, instAddTorsor, instCoeAffineMap, instCoeHeadContinuousMap, instDistribMulActionOfSMulCommClassOfContinuousConstSMul, instFunLike, instInhabited, instModuleOfSMulCommClassOfContinuousConstSMul, instMulAction, instNeg, instSMul, instSub, instZero, lineMap, prod, prodMap, toAffineMap, toContinuousMap, toContinuousAffineMap, Β«term_→ᴬ[_]_Β»
26
Theoremsadd_apply, add_contLinear, apply_lineMap, apply_lineMap', coe_add, coe_comp, coe_const, coe_contLinear, coe_contLinear_eq_linear, coe_continuousMap_mk, coe_id, coe_injective, coe_lineMap_eq, coe_linear_eq_coe_contLinear, coe_mk, coe_mk_const_linear_eq_linear, coe_mk_contLinear_eq_linear, coe_neg, coe_prod, coe_prodMap, coe_smul, coe_sub, coe_toAffineMap, coe_toAffineMap_mk, coe_to_continuousMap, coe_zero, comp_apply, comp_contLinear, comp_id, congr_fun, const_contLinear, cont, contLinear_eq_zero_iff_exists_const, contLinear_map_vsub, continuous, decomp, ext, ext_iff, id_comp, instContinuousMapClass, instIsCentralScalar, lineMap_apply', lineMap_toAffineMap, map_vadd, mk_coe, neg_apply, neg_contLinear, prodMap_apply, prodMap_contLinear, prodMap_toAffineMap, prod_apply, prod_contLinear, prod_toAffineMap, smul_apply, smul_contLinear, sub_apply, sub_contLinear, toAffineMap_injective, toContinuousMap_coe, toFun_eq_coe, to_affine_map_contLinear, to_continuousMap_injective, vadd_apply, vadd_contLinear, vadd_toAffineMap, vsub_apply, vsub_contLinear, vsub_toAffineMap, zero_apply, zero_contLinear, coe_toContinuousAffineMap, toContinuousAffineMap_contLinear, toContinuousAffineMap_map_zero
73
Total99

ContinuousAffineMap

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
8 mathmath: comp_apply, id_comp, comp_contLinear, coe_comp, ContinuousAffineEquiv.trans_toContinuousAffineMap, norm_comp_le, signedDist_apply, comp_id
const πŸ“–CompOp
5 mathmath: const_contLinear, contLinear_eq_zero_iff_exists_const, coe_const, signedDist_linear_apply, signedDist_apply
contLinear πŸ“–CompOp
34 mathmath: neg_contLinear, fderiv, const_contLinear, EuclideanGeometry.orthogonalProjection_contLinear, HasFTaylorSeriesUpToOn.comp_continuousAffineMap, decomp, coe_mk_contLinear_eq_linear, smul_contLinear, norm_def, comp_contLinear, coe_linear_eq_coe_contLinear, norm_eq, coe_mk_const_linear_eq_linear, norm_contLinear_le, hasStrictFDerivAt, sub_contLinear, contLinear_eq_zero_iff_exists_const, coe_contLinear_eq_linear, prod_contLinear, map_vadd, prodMap_contLinear, to_affine_map_contLinear, add_contLinear, hasFDerivAtFilter, hasFDerivAt, fderivWithin, vadd_contLinear, coe_contLinear, ContinuousLinearMap.toContinuousAffineMap_contLinear, contLinear_map_vsub, hasFDerivWithinAt, vsub_contLinear, zero_contLinear, toConstProdContinuousLinearMap_snd
id πŸ“–CompOp
5 mathmath: id_comp, AffineIsometry.toContinuousAffineMap_id, coe_id, signedDist_apply, comp_id
instAdd πŸ“–CompOp
3 mathmath: coe_add, add_apply, add_contLinear
instAddCommGroup πŸ“–CompOp
46 mathmath: lineMap_apply', signedDist_right_congr, signedDist_left_congr, signedDist_triangle, signedDist_linear_apply_apply, signedDist_le_dist, signedDist_apply_apply, vadd_toAffineMap, signedDist_eq_zero_of_orthogonal, AffineSubspace.signedInfDist_eq_signedDist_of_mem, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, signedDist_triangle_left, signedDist_smul_of_pos, signedDist_lineMap_lineMap, signedDist_vadd_left_swap, signedDist_vadd_right, signedDist_lineMap_left, signedDist_anticomm, signedDist_triangle_right, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, signedDist_linear_apply, signedDist_self, signedDist_vsub_self, signedDist_smul, signedDist_smul_of_neg, signedDist_vadd_right_swap, vadd_contLinear, signedDist_vadd_left, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, signedDist_right_lineMap, vsub_toAffineMap, AffineSubspace.signedInfDist_def, signedDist_lineMap_right, vsub_apply, signedDist_apply, signedDist_eq_dist_iff_vsub_mem_span, vsub_contLinear, abs_signedDist_le_dist, signedDist_apply_linear, signedDist_left_lineMap, signedDist_vadd_vadd, vadd_apply
instAddTorsor πŸ“–CompOp
46 mathmath: lineMap_apply', signedDist_right_congr, signedDist_left_congr, signedDist_triangle, signedDist_linear_apply_apply, signedDist_le_dist, signedDist_apply_apply, vadd_toAffineMap, signedDist_eq_zero_of_orthogonal, AffineSubspace.signedInfDist_eq_signedDist_of_mem, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, signedDist_triangle_left, signedDist_smul_of_pos, signedDist_lineMap_lineMap, signedDist_vadd_left_swap, signedDist_vadd_right, signedDist_lineMap_left, signedDist_anticomm, signedDist_triangle_right, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, signedDist_linear_apply, signedDist_self, signedDist_vsub_self, signedDist_smul, signedDist_smul_of_neg, signedDist_vadd_right_swap, vadd_contLinear, signedDist_vadd_left, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, signedDist_right_lineMap, vsub_toAffineMap, AffineSubspace.signedInfDist_def, signedDist_lineMap_right, vsub_apply, signedDist_apply, signedDist_eq_dist_iff_vsub_mem_span, vsub_contLinear, abs_signedDist_le_dist, signedDist_apply_linear, signedDist_left_lineMap, signedDist_vadd_vadd, vadd_apply
instCoeAffineMap πŸ“–CompOpβ€”
instCoeHeadContinuousMap πŸ“–CompOpβ€”
instDistribMulActionOfSMulCommClassOfContinuousConstSMul πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
177 mathmath: Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, lineMap_apply', fderiv, differentiableWithinAt, ext_iff, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, comp_apply, prodMap_apply, coe_mk, EuclideanGeometry.orthogonalProjection_congr, neg_apply, toFun_eq_coe, ContinuousAffineEquiv.coe_toContinuousAffineMap, coe_sub, differentiable, smul_apply, EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq, lintegral_fderiv_lineMap_eq_edist, AffineSubspace.coe_subtypeA, signedDist_right_congr, Affine.Simplex.sign_signedInfDist_lineMap_incenter_touchpoint, coe_to_continuousMap, HasFTaylorSeriesUpToOn.comp_continuousAffineMap, coe_lineMap_eq, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, signedDist_triangle, Affine.Simplex.orthogonalProjectionSpan_eq_point, signedDist_linear_apply_apply, decomp, zero_apply, EuclideanGeometry.orthogonalProjection_map, EuclideanGeometry.angle_orthogonalProjection_self, ContinuousLinearMap.toContinuousAffineMap_map_zero, EuclideanGeometry.orthogonalProjection_apply_mem, norm_def, signedDist_le_dist, EuclideanGeometry.dist_orthogonalProjection_eq_iff_angle_eq, signedDist_apply_apply, EuclideanGeometry.orthogonalProjection_apply', Affine.Simplex.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, Affine.Simplex.ExcenterExists.sign_signedInfDist_touchpoint, coe_add, signedDist_eq_zero_of_orthogonal, coe_toAffineMap, AffineSubspace.signedInfDist_eq_signedDist_of_mem, Affine.Simplex.signedInfDist_apply_self, coe_injective, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, Affine.Simplex.orthogonalProjectionSpan_congr, signedDist_triangle_left, coe_comp, hasStrictFDerivAt, EuclideanGeometry.orthogonalProjection_subtype, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, Affine.Simplex.ExcenterExists.sign_signedInfDist_lineMap_excenter_touchpoint, contDiff, EuclideanGeometry.orthogonalProjection_vadd_eq_self, toContinuousMap_coe, signedDist_smul_of_pos, EuclideanGeometry.oangle_orthogonalProjection_self, apply_lineMap', signedDist_lineMap_lineMap, EuclideanGeometry.dist_orthogonalProjection_eq_dist_iff_eq_of_mem, AffineSubspace.abs_signedInfDist_eq_dist_of_mem_affineSpan_insert, signedDist_vadd_left_swap, Affine.Simplex.orthogonalProjection_circumcenter, Affine.Simplex.exists_forall_dist_eq_iff_exists_excenterExists_and_eq_excenter, instContinuousMapClass, signedDist_vadd_right, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, map_vadd, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, signedDist_lineMap_left, coe_const, EuclideanGeometry.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, coe_zero, signedDist_anticomm, add_apply, coe_id, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, signedDist_triangle_right, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, coe_smul, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, congr_fun, signedDist_self, hasFDerivAtFilter, signedDist_vsub_self, Affine.Simplex.exists_forall_signedInfDist_eq_iff_eq_incenter, signedDist_smul, EuclideanGeometry.dist_eq_iff_dist_orthogonalProjection_eq, hasFDerivAt, norm_image_zero_le, apply_lineMap, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, signedDist_smul_of_neg, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, Affine.Simplex.sign_signedInfDist_touchpoint_empty, signedDist_vadd_right_swap, fderivWithin, EuclideanGeometry.exists_dist_eq_iff_exists_dist_orthogonalProjection_eq, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, sub_apply, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, EuclideanGeometry.orthogonalProjection_orthogonalProjection, EuclideanGeometry.orthogonalProjection_vsub_mem_direction, signedDist_vadd_left, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, EuclideanGeometry.vsub_orthogonalProjection_mem_direction, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.Sphere.IsTangent.isTangentAt, contLinear_map_vsub, EuclideanGeometry.reflection_apply', surjOn_extremePoints_image, differentiableOn, coe_continuousMap_mk, EuclideanGeometry.oangle_self_orthogonalProjection, norm_comp_le, signedDist_right_lineMap, Affine.Simplex.abs_signedInfDist_eq_dist_of_mem_affineSpan_range, Affine.Simplex.ExcenterExists.signedInfDist_excenter, Affine.Simplex.orthogonalProjectionSpan_reindex, AffineSubspace.signedInfDist_def, prod_apply, signedDist_lineMap_right, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, vsub_apply, Affine.Simplex.sign_signedInfDist_incenter, Affine.Simplex.ExcenterExists.sign_signedInfDist_excenter, hasFDerivWithinAt, Affine.Simplex.signedInfDist_affineCombination, EuclideanGeometry.angle_self_orthogonalProjection, signedDist_eq_dist_iff_vsub_mem_span, EuclideanGeometry.orthogonalProjection_eq_self_iff, Affine.Simplex.ExcenterExists.signedInfDist_excenter_eq_mul_sum_inv, EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, Affine.Simplex.exists_forall_signedInfDist_eq_iff_excenterExists_and_eq_excenter, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, EuclideanGeometry.orthogonalProjection_apply, AffineSubspace.signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, toConstProdContinuousLinearMap_fst, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, abs_signedDist_le_dist, AffineSubspace.signedInfDist_apply_of_mem, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, ContinuousLinearMap.coe_toContinuousAffineMap, continuous, Affine.Simplex.signedInfDist_apply_of_ne, AffineIsometry.coe_toContinuousAffineMap, signedDist_left_lineMap, coe_neg, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, differentiableAt, coe_prod, coe_prodMap, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, EuclideanGeometry.dist_set_eq_iff_dist_orthogonalProjection_eq, signedDist_vadd_vadd, vadd_apply, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self, Affine.Simplex.signedInfDist_incenter
instInhabited πŸ“–CompOpβ€”
instModuleOfSMulCommClassOfContinuousConstSMul πŸ“–CompOp
42 mathmath: lineMap_apply', signedDist_right_congr, signedDist_left_congr, signedDist_triangle, signedDist_linear_apply_apply, signedDist_le_dist, signedDist_apply_apply, signedDist_eq_zero_of_orthogonal, AffineSubspace.signedInfDist_eq_signedDist_of_mem, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, signedDist_triangle_left, signedDist_smul_of_pos, signedDist_lineMap_lineMap, signedDist_vadd_left_swap, signedDist_vadd_right, signedDist_lineMap_left, signedDist_anticomm, signedDist_triangle_right, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, signedDist_linear_apply, signedDist_self, signedDist_vsub_self, signedDist_smul, signedDist_smul_of_neg, signedDist_vadd_right_swap, signedDist_vadd_left, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, signedDist_right_lineMap, AffineSubspace.signedInfDist_def, signedDist_lineMap_right, signedDist_apply, signedDist_eq_dist_iff_vsub_mem_span, toConstProdContinuousLinearMap_fst, abs_signedDist_le_dist, signedDist_apply_linear, signedDist_left_lineMap, signedDist_vadd_vadd, toConstProdContinuousLinearMap_snd
instMulAction πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
3 mathmath: neg_contLinear, neg_apply, coe_neg
instSMul πŸ“–CompOp
4 mathmath: smul_apply, smul_contLinear, coe_smul, instIsCentralScalar
instSub πŸ“–CompOp
3 mathmath: coe_sub, sub_contLinear, sub_apply
instZero πŸ“–CompOp
3 mathmath: zero_apply, coe_zero, zero_contLinear
lineMap πŸ“–CompOp
4 mathmath: lintegral_fderiv_lineMap_eq_edist, coe_lineMap_eq, lineMap_toAffineMap, apply_lineMap'
prod πŸ“–CompOp
4 mathmath: prod_contLinear, prod_apply, prod_toAffineMap, coe_prod
prodMap πŸ“–CompOp
5 mathmath: prodMap_apply, ContinuousAffineEquiv.prodCongr_toContinuousAffineMap, prodMap_toAffineMap, prodMap_contLinear, coe_prodMap
toAffineMap πŸ“–CompOp
18 mathmath: toFun_eq_coe, prodMap_toAffineMap, lineMap_toAffineMap, vadd_toAffineMap, coe_linear_eq_coe_contLinear, coe_toAffineMap, AffineSubspace.signedInfDist_eq_const_of_mem, AffineSubspace.subtypeA_toAffineMap, coe_contLinear_eq_linear, coe_contLinear, signedDist_apply_linear_apply, vsub_toAffineMap, EuclideanGeometry.orthogonalProjection_linear, prod_toAffineMap, signedDist_apply_linear, ContinuousAffineEquiv.toContinuousAffineMap_toAffineMap, coe_toAffineMap_mk, cont
toContinuousMap πŸ“–CompOp
2 mathmath: toContinuousMap_coe, ContinuousAffineEquiv.toContinuousAffineMap_toContinuousMap

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
add_contLinear πŸ“–mathematicalβ€”contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
ContinuousAffineMap
instAdd
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.add
IsTopologicalAddGroup.toContinuousAdd
β€”instIsTopologicalAddTorsor
apply_lineMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
AffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
AffineMap.instFunLike
AffineMap.lineMap
β€”coe_toAffineMap
AffineMap.apply_lineMap
apply_lineMap' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
lineMap
β€”apply_lineMap
coe_add πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instAdd
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”β€”
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
comp
β€”β€”
coe_const πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
const
β€”β€”
coe_contLinear πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
contLinear
LinearMap
LinearMap.instFunLike
AffineMap.linear
toAffineMap
β€”β€”
coe_contLinear_eq_linear πŸ“–mathematicalβ€”ContinuousLinearMap.toLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
contLinear
AffineMap.linear
toAffineMap
β€”β€”
coe_continuousMap_mk πŸ“–mathematicalContinuous
AffineMap.toFun
toContinuousMap
ContinuousAffineMap
instFunLike
instContinuousMapClass
DFunLike.coe
AffineMap
AffineMap.instFunLike
β€”instContinuousMapClass
coe_id πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
id
β€”β€”
coe_injective πŸ“–mathematicalβ€”ContinuousAffineMap
DFunLike.coe
instFunLike
β€”DFunLike.coe_injective
coe_lineMap_eq πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instFunLike
lineMap
AffineMap
AffineMap.instFunLike
AffineMap.lineMap
β€”β€”
coe_linear_eq_coe_contLinear πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
LinearMap.instFunLike
AffineMap.linear
toAffineMap
ContinuousLinearMap
ContinuousLinearMap.funLike
contLinear
β€”β€”
coe_mk πŸ“–mathematicalContinuous
AffineMap.toFun
DFunLike.coe
ContinuousAffineMap
instFunLike
AffineMap
AffineMap.instFunLike
β€”β€”
coe_mk_const_linear_eq_linear πŸ“–mathematicalContinuous
AffineMap.toFun
DFunLike.coe
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
contLinear
LinearMap
LinearMap.instFunLike
AffineMap.linear
β€”coe_mk_contLinear_eq_linear
coe_mk_contLinear_eq_linear πŸ“–mathematicalContinuous
AffineMap.toFun
DFunLike.coe
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
contLinear
LinearMap
LinearMap.instFunLike
AffineMap.linear
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instNeg
Pi.instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
coe_prod πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
instFunLike
prod
Pi.prod
β€”β€”
coe_prodMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
instFunLike
prodMap
β€”β€”
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instSMul
Function.hasSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instSub
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”β€”
coe_toAffineMap πŸ“–mathematicalβ€”DFunLike.coe
AffineMap
AffineMap.instFunLike
toAffineMap
ContinuousAffineMap
instFunLike
β€”β€”
coe_toAffineMap_mk πŸ“–mathematicalContinuous
AffineMap.toFun
toAffineMapβ€”β€”
coe_to_continuousMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toContinuousMap
ContinuousAffineMap
instFunLike
instContinuousMapClass
β€”instContinuousMapClass
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instZero
Pi.instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
comp
β€”β€”
comp_contLinear πŸ“–mathematicalβ€”contLinear
comp
ContinuousLinearMap.comp
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
RingHomCompTriple.ids
β€”β€”
comp_id πŸ“–mathematicalβ€”comp
id
β€”ext
congr_fun πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
β€”DFunLike.congr_fun
const_contLinear πŸ“–mathematicalβ€”contLinear
const
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”β€”
cont πŸ“–mathematicalβ€”Continuous
AffineMap.toFun
toAffineMap
β€”β€”
contLinear_eq_zero_iff_exists_const πŸ“–mathematicalβ€”contLinear
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
const
β€”LinearMap.ext
coe_contLinear_eq_linear
ContinuousLinearMap.ext
coe_linear_eq_coe_contLinear
AffineMap.ext
ext
coe_toAffineMap
AffineMap.const_apply
coe_const
AffineMap.linear_eq_zero_iff_exists_const
contLinear_map_vsub πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
contLinear
VSub.vsub
AddTorsor.toVSub
AddCommGroup.toAddGroup
ContinuousAffineMap
instFunLike
β€”AffineMap.linearMap_vsub
continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousAffineMap
instFunLike
β€”cont
decomp πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
Pi.instAdd
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
ContinuousLinearMap.funLike
contLinear
instIsTopologicalAddTorsor
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”instIsTopologicalAddTorsor
coe_mk_contLinear_eq_linear
AffineMap.decomp
Pi.add_apply
LinearMap.map_zero
zero_add
Function.const_def
ext πŸ“–β€”DFunLike.coe
ContinuousAffineMap
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
β€”ext
id_comp πŸ“–mathematicalβ€”comp
id
β€”ext
instContinuousMapClass πŸ“–mathematicalβ€”ContinuousMapClass
ContinuousAffineMap
instFunLike
β€”cont
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instSMul
MulOpposite
MulOpposite.instMonoid
SMulCommClass.op_right
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
ContinuousConstSMul.op
β€”SMulCommClass.op_right
ContinuousConstSMul.op
ext
IsCentralScalar.op_smul_eq_smul
lineMap_apply' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
AffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
instAddCommGroup
instModuleOfSMulCommClassOfContinuousConstSMul
instAddTorsor
AffineMap.instFunLike
AffineMap.lineMap
β€”β€”
lineMap_toAffineMap πŸ“–mathematicalβ€”toAffineMap
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
addGroupIsAddTorsor
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
lineMap
AffineMap.lineMap
β€”β€”
map_vadd πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
HVAdd.hVAdd
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.funLike
contLinear
β€”AffineMap.map_vadd'
mk_coe πŸ“–β€”Continuous
AffineMap.toFun
toAffineMap
β€”β€”ext
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instNeg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
neg_contLinear πŸ“–mathematicalβ€”contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
ContinuousAffineMap
instNeg
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.neg
β€”instIsTopologicalAddTorsor
prodMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
instFunLike
prodMap
β€”β€”
prodMap_contLinear πŸ“–mathematicalβ€”contLinear
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsorProd
prodMap
ContinuousLinearMap.prodMap
β€”instIsTopologicalAddTorsorProd
prodMap_toAffineMap πŸ“–mathematicalβ€”toAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
prodMap
AffineMap.prodMap
β€”β€”
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
instFunLike
prod
β€”β€”
prod_contLinear πŸ“–mathematicalβ€”contLinear
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsorProd
prod
ContinuousLinearMap.prod
β€”instIsTopologicalAddTorsorProd
prod_toAffineMap πŸ“–mathematicalβ€”toAffineMap
Prod.instAddCommGroup
Prod.instModule
Ring.toSemiring
AddCommGroup.toAddCommMonoid
instTopologicalSpaceProd
Prod.instAddTorsor
AddCommGroup.toAddGroup
prod
AffineMap.prod
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
β€”β€”
smul_contLinear πŸ“–mathematicalβ€”contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
ContinuousAffineMap
instSMul
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.instSMul
DistribMulAction.toDistribSMul
AddCommMonoid.toAddMonoid
β€”instIsTopologicalAddTorsor
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”β€”
sub_contLinear πŸ“–mathematicalβ€”contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
ContinuousAffineMap
instSub
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.sub
β€”instIsTopologicalAddTorsor
toAffineMap_injective πŸ“–β€”toAffineMapβ€”β€”β€”
toContinuousMap_coe πŸ“–mathematicalβ€”toContinuousMap
toContinuousMap
ContinuousAffineMap
instFunLike
instContinuousMapClass
β€”β€”
toFun_eq_coe πŸ“–mathematicalβ€”AffineMap.toFun
toAffineMap
DFunLike.coe
ContinuousAffineMap
instFunLike
β€”β€”
to_affine_map_contLinear πŸ“–mathematicalβ€”contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
ContinuousLinearMap.toContinuousAffineMap
β€”ContinuousLinearMap.toContinuousAffineMap_contLinear
to_continuousMap_injective πŸ“–β€”toContinuousMap
ContinuousAffineMap
instFunLike
instContinuousMapClass
β€”β€”instContinuousMapClass
ext
ContinuousMap.congr_fun
vadd_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
instFunLike
HVAdd.hVAdd
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instAddCommGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
instAddTorsor
β€”β€”
vadd_contLinear πŸ“–mathematicalβ€”contLinear
HVAdd.hVAdd
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instAddCommGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
instAddTorsor
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.add
IsTopologicalAddGroup.toContinuousAdd
instIsTopologicalAddTorsor
β€”β€”
vadd_toAffineMap πŸ“–mathematicalβ€”toAffineMap
HVAdd.hVAdd
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instHVAdd
AddSemigroupAction.toVAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
instAddCommGroup
AddAction.toAddSemigroupAction
AddTorsor.toAddAction
instAddTorsor
AffineMap
AffineMap.instAddCommGroup
AffineMap.instAddTorsor
β€”β€”
vsub_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
VSub.vsub
AddTorsor.toVSub
instAddCommGroup
instAddTorsor
β€”β€”
vsub_contLinear πŸ“–mathematicalβ€”contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
VSub.vsub
ContinuousAffineMap
AddTorsor.toVSub
instAddCommGroup
instAddTorsor
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.sub
β€”instIsTopologicalAddTorsor
vsub_toAffineMap πŸ“–mathematicalβ€”toAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
VSub.vsub
ContinuousAffineMap
AddTorsor.toVSub
instAddCommGroup
instAddTorsor
AffineMap
AffineMap.instAddCommGroup
AffineMap.instAddTorsor
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instFunLike
instZero
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”β€”
zero_contLinear πŸ“–mathematicalβ€”contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
ContinuousAffineMap
instZero
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
ContinuousLinearMap.zero
β€”instIsTopologicalAddTorsor

ContinuousLinearMap

Definitions

NameCategoryTheorems
toContinuousAffineMap πŸ“–CompOp
6 mathmath: toContinuousAffineMap_map_zero, ContinuousLinearEquiv.toContinuousAffineEquiv_toContinuousAffineMap, ContinuousAffineMap.to_affine_map_contLinear, toContinuousAffineMap_contLinear, signedDist_apply, coe_toContinuousAffineMap

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toContinuousAffineMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
ContinuousAffineMap.instFunLike
toContinuousAffineMap
ContinuousLinearMap
Ring.toSemiring
RingHom.id
Semiring.toNonAssocSemiring
AddCommGroup.toAddCommMonoid
funLike
β€”β€”
toContinuousAffineMap_contLinear πŸ“–mathematicalβ€”ContinuousAffineMap.contLinear
addGroupIsAddTorsor
AddCommGroup.toAddGroup
instIsTopologicalAddTorsor
toContinuousAffineMap
β€”instIsTopologicalAddTorsor
toContinuousAffineMap_map_zero πŸ“–mathematicalβ€”DFunLike.coe
ContinuousAffineMap
addGroupIsAddTorsor
AddCommGroup.toAddGroup
ContinuousAffineMap.instFunLike
toContinuousAffineMap
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
β€”map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
continuousSemilinearMapClass

(root)

Definitions

NameCategoryTheorems
ContinuousAffineMap πŸ“–CompData
197 mathmath: Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, ContinuousAffineMap.lineMap_apply', ContinuousAffineMap.neg_contLinear, ContinuousAffineMap.fderiv, ContinuousAffineMap.differentiableWithinAt, ContinuousAffineMap.ext_iff, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, ContinuousAffineMap.comp_apply, ContinuousAffineMap.prodMap_apply, ContinuousAffineMap.coe_mk, EuclideanGeometry.orthogonalProjection_congr, ContinuousAffineMap.neg_apply, ContinuousAffineMap.toFun_eq_coe, ContinuousAffineEquiv.coe_toContinuousAffineMap, ContinuousAffineMap.coe_sub, ContinuousAffineMap.differentiable, ContinuousAffineMap.smul_apply, EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq, lintegral_fderiv_lineMap_eq_edist, AffineSubspace.coe_subtypeA, signedDist_right_congr, Affine.Simplex.sign_signedInfDist_lineMap_incenter_touchpoint, ContinuousAffineMap.coe_to_continuousMap, HasFTaylorSeriesUpToOn.comp_continuousAffineMap, ContinuousAffineMap.coe_lineMap_eq, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, signedDist_left_congr, signedDist_triangle, Affine.Simplex.orthogonalProjectionSpan_eq_point, signedDist_linear_apply_apply, ContinuousAffineMap.decomp, ContinuousAffineMap.zero_apply, EuclideanGeometry.orthogonalProjection_map, EuclideanGeometry.angle_orthogonalProjection_self, ContinuousLinearMap.toContinuousAffineMap_map_zero, EuclideanGeometry.orthogonalProjection_apply_mem, ContinuousAffineMap.smul_contLinear, ContinuousAffineMap.norm_def, signedDist_le_dist, EuclideanGeometry.dist_orthogonalProjection_eq_iff_angle_eq, signedDist_apply_apply, ContinuousAffineMap.vadd_toAffineMap, EuclideanGeometry.orthogonalProjection_apply', Affine.Simplex.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, Affine.Simplex.ExcenterExists.sign_signedInfDist_touchpoint, ContinuousAffineMap.coe_add, signedDist_eq_zero_of_orthogonal, ContinuousAffineMap.coe_toAffineMap, AffineSubspace.signedInfDist_eq_signedDist_of_mem, Affine.Simplex.signedInfDist_apply_self, ContinuousAffineMap.coe_injective, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, Affine.Simplex.orthogonalProjectionSpan_congr, signedDist_triangle_left, ContinuousAffineMap.norm_contLinear_le, ContinuousAffineMap.coe_comp, ContinuousAffineMap.hasStrictFDerivAt, EuclideanGeometry.orthogonalProjection_subtype, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, Affine.Simplex.ExcenterExists.sign_signedInfDist_lineMap_excenter_touchpoint, ContinuousAffineMap.sub_contLinear, ContinuousAffineMap.contDiff, EuclideanGeometry.orthogonalProjection_vadd_eq_self, ContinuousAffineMap.toContinuousMap_coe, signedDist_smul_of_pos, EuclideanGeometry.oangle_orthogonalProjection_self, ContinuousAffineMap.apply_lineMap', signedDist_lineMap_lineMap, EuclideanGeometry.dist_orthogonalProjection_eq_dist_iff_eq_of_mem, AffineSubspace.abs_signedInfDist_eq_dist_of_mem_affineSpan_insert, signedDist_vadd_left_swap, Affine.Simplex.orthogonalProjection_circumcenter, Affine.Simplex.exists_forall_dist_eq_iff_exists_excenterExists_and_eq_excenter, ContinuousAffineMap.instContinuousMapClass, signedDist_vadd_right, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, ContinuousAffineMap.map_vadd, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, signedDist_lineMap_left, ContinuousAffineMap.coe_const, EuclideanGeometry.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, ContinuousAffineMap.coe_zero, signedDist_anticomm, ContinuousAffineMap.add_apply, ContinuousAffineMap.coe_id, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, signedDist_triangle_right, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, ContinuousAffineMap.add_contLinear, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, ContinuousAffineMap.coe_smul, signedDist_linear_apply, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, ContinuousAffineMap.congr_fun, signedDist_self, ContinuousAffineMap.hasFDerivAtFilter, signedDist_vsub_self, Affine.Simplex.exists_forall_signedInfDist_eq_iff_eq_incenter, signedDist_smul, EuclideanGeometry.dist_eq_iff_dist_orthogonalProjection_eq, ContinuousAffineMap.hasFDerivAt, ContinuousAffineMap.norm_image_zero_le, ContinuousAffineMap.apply_lineMap, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, signedDist_smul_of_neg, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, Affine.Simplex.sign_signedInfDist_touchpoint_empty, signedDist_vadd_right_swap, ContinuousAffineMap.fderivWithin, EuclideanGeometry.exists_dist_eq_iff_exists_dist_orthogonalProjection_eq, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, ContinuousAffineMap.sub_apply, ContinuousAffineMap.vadd_contLinear, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, AffineIsometry.toContinuousAffineMap_injective, EuclideanGeometry.orthogonalProjection_orthogonalProjection, EuclideanGeometry.orthogonalProjection_vsub_mem_direction, signedDist_vadd_left, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, EuclideanGeometry.vsub_orthogonalProjection_mem_direction, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.Sphere.IsTangent.isTangentAt, ContinuousAffineMap.contLinear_map_vsub, EuclideanGeometry.reflection_apply', surjOn_extremePoints_image, ContinuousAffineMap.differentiableOn, ContinuousAffineMap.coe_continuousMap_mk, EuclideanGeometry.oangle_self_orthogonalProjection, ContinuousAffineMap.norm_comp_le, signedDist_right_lineMap, ContinuousAffineMap.vsub_toAffineMap, ContinuousAffineEquiv.toContinuousAffineMap_injective, Affine.Simplex.abs_signedInfDist_eq_dist_of_mem_affineSpan_range, Affine.Simplex.ExcenterExists.signedInfDist_excenter, Affine.Simplex.orthogonalProjectionSpan_reindex, AffineSubspace.signedInfDist_def, ContinuousAffineMap.prod_apply, signedDist_lineMap_right, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, ContinuousAffineMap.vsub_apply, Affine.Simplex.sign_signedInfDist_incenter, Affine.Simplex.ExcenterExists.sign_signedInfDist_excenter, ContinuousAffineMap.hasFDerivWithinAt, Affine.Simplex.signedInfDist_affineCombination, signedDist_apply, EuclideanGeometry.angle_self_orthogonalProjection, signedDist_eq_dist_iff_vsub_mem_span, EuclideanGeometry.orthogonalProjection_eq_self_iff, Affine.Simplex.ExcenterExists.signedInfDist_excenter_eq_mul_sum_inv, EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, Affine.Simplex.exists_forall_signedInfDist_eq_iff_excenterExists_and_eq_excenter, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, ContinuousAffineMap.vsub_contLinear, EuclideanGeometry.orthogonalProjection_apply, AffineSubspace.signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, ContinuousAffineMap.toConstProdContinuousLinearMap_fst, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, abs_signedDist_le_dist, AffineSubspace.signedInfDist_apply_of_mem, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, ContinuousLinearMap.coe_toContinuousAffineMap, signedDist_apply_linear, ContinuousAffineMap.continuous, ContinuousAffineMap.zero_contLinear, Affine.Simplex.signedInfDist_apply_of_ne, AffineIsometry.coe_toContinuousAffineMap, signedDist_left_lineMap, ContinuousAffineMap.coe_neg, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, ContinuousAffineMap.differentiableAt, ContinuousAffineMap.coe_prod, ContinuousAffineMap.coe_prodMap, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, EuclideanGeometry.dist_set_eq_iff_dist_orthogonalProjection_eq, ContinuousAffineMap.instIsCentralScalar, signedDist_vadd_vadd, ContinuousAffineMap.vadd_apply, ContinuousAffineMap.toConstProdContinuousLinearMap_snd, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self, Affine.Simplex.signedInfDist_incenter
Β«term_→ᴬ[_]_Β» πŸ“–CompOpβ€”

---

← Back to Index