| Name | Category | Theorems |
comp π | CompOp | 8 mathmath: comp_apply, id_comp, comp_contLinear, coe_comp, ContinuousAffineEquiv.trans_toContinuousAffineMap, norm_comp_le, signedDist_apply, comp_id
|
const π | CompOp | 5 mathmath: const_contLinear, contLinear_eq_zero_iff_exists_const, coe_const, signedDist_linear_apply, signedDist_apply
|
contLinear π | CompOp | 34 mathmath: neg_contLinear, fderiv, const_contLinear, EuclideanGeometry.orthogonalProjection_contLinear, HasFTaylorSeriesUpToOn.comp_continuousAffineMap, decomp, coe_mk_contLinear_eq_linear, smul_contLinear, norm_def, comp_contLinear, coe_linear_eq_coe_contLinear, norm_eq, coe_mk_const_linear_eq_linear, norm_contLinear_le, hasStrictFDerivAt, sub_contLinear, contLinear_eq_zero_iff_exists_const, coe_contLinear_eq_linear, prod_contLinear, map_vadd, prodMap_contLinear, to_affine_map_contLinear, add_contLinear, hasFDerivAtFilter, hasFDerivAt, fderivWithin, vadd_contLinear, coe_contLinear, ContinuousLinearMap.toContinuousAffineMap_contLinear, contLinear_map_vsub, hasFDerivWithinAt, vsub_contLinear, zero_contLinear, toConstProdContinuousLinearMap_snd
|
id π | CompOp | 5 mathmath: id_comp, AffineIsometry.toContinuousAffineMap_id, coe_id, signedDist_apply, comp_id
|
instAdd π | CompOp | 3 mathmath: coe_add, add_apply, add_contLinear
|
instAddCommGroup π | CompOp | 46 mathmath: lineMap_apply', signedDist_right_congr, signedDist_left_congr, signedDist_triangle, signedDist_linear_apply_apply, signedDist_le_dist, signedDist_apply_apply, vadd_toAffineMap, signedDist_eq_zero_of_orthogonal, AffineSubspace.signedInfDist_eq_signedDist_of_mem, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, signedDist_triangle_left, signedDist_smul_of_pos, signedDist_lineMap_lineMap, signedDist_vadd_left_swap, signedDist_vadd_right, signedDist_lineMap_left, signedDist_anticomm, signedDist_triangle_right, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, signedDist_linear_apply, signedDist_self, signedDist_vsub_self, signedDist_smul, signedDist_smul_of_neg, signedDist_vadd_right_swap, vadd_contLinear, signedDist_vadd_left, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, signedDist_right_lineMap, vsub_toAffineMap, AffineSubspace.signedInfDist_def, signedDist_lineMap_right, vsub_apply, signedDist_apply, signedDist_eq_dist_iff_vsub_mem_span, vsub_contLinear, abs_signedDist_le_dist, signedDist_apply_linear, signedDist_left_lineMap, signedDist_vadd_vadd, vadd_apply
|
instAddTorsor π | CompOp | 46 mathmath: lineMap_apply', signedDist_right_congr, signedDist_left_congr, signedDist_triangle, signedDist_linear_apply_apply, signedDist_le_dist, signedDist_apply_apply, vadd_toAffineMap, signedDist_eq_zero_of_orthogonal, AffineSubspace.signedInfDist_eq_signedDist_of_mem, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, signedDist_triangle_left, signedDist_smul_of_pos, signedDist_lineMap_lineMap, signedDist_vadd_left_swap, signedDist_vadd_right, signedDist_lineMap_left, signedDist_anticomm, signedDist_triangle_right, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, signedDist_linear_apply, signedDist_self, signedDist_vsub_self, signedDist_smul, signedDist_smul_of_neg, signedDist_vadd_right_swap, vadd_contLinear, signedDist_vadd_left, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, signedDist_right_lineMap, vsub_toAffineMap, AffineSubspace.signedInfDist_def, signedDist_lineMap_right, vsub_apply, signedDist_apply, signedDist_eq_dist_iff_vsub_mem_span, vsub_contLinear, abs_signedDist_le_dist, signedDist_apply_linear, signedDist_left_lineMap, signedDist_vadd_vadd, vadd_apply
|
instCoeAffineMap π | CompOp | β |
instCoeHeadContinuousMap π | CompOp | β |
instDistribMulActionOfSMulCommClassOfContinuousConstSMul π | CompOp | β |
instFunLike π | CompOp | 177 mathmath: Affine.Simplex.orthogonalProjectionSpan_map, EuclideanGeometry.vsub_orthogonalProjection_mem_direction_orthogonal, lineMap_apply', fderiv, differentiableWithinAt, ext_iff, Affine.Simplex.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, comp_apply, prodMap_apply, coe_mk, EuclideanGeometry.orthogonalProjection_congr, neg_apply, toFun_eq_coe, ContinuousAffineEquiv.coe_toContinuousAffineMap, coe_sub, differentiable, smul_apply, EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq, lintegral_fderiv_lineMap_eq_edist, AffineSubspace.coe_subtypeA, signedDist_right_congr, Affine.Simplex.sign_signedInfDist_lineMap_incenter_touchpoint, coe_to_continuousMap, HasFTaylorSeriesUpToOn.comp_continuousAffineMap, coe_lineMap_eq, EuclideanGeometry.reflection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.inter_eq_singleton_orthogonalProjection, signedDist_triangle, Affine.Simplex.orthogonalProjectionSpan_eq_point, signedDist_linear_apply_apply, decomp, zero_apply, EuclideanGeometry.orthogonalProjection_map, EuclideanGeometry.angle_orthogonalProjection_self, ContinuousLinearMap.toContinuousAffineMap_map_zero, EuclideanGeometry.orthogonalProjection_apply_mem, norm_def, signedDist_le_dist, EuclideanGeometry.dist_orthogonalProjection_eq_iff_angle_eq, signedDist_apply_apply, EuclideanGeometry.orthogonalProjection_apply', Affine.Simplex.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, EuclideanGeometry.orthogonalProjection_orthogonalProjection_of_le, EuclideanGeometry.Sphere.isTangent_iff_isTangentAt_orthogonalProjection, Affine.Simplex.ExcenterExists.sign_signedInfDist_touchpoint, coe_add, signedDist_eq_zero_of_orthogonal, coe_toAffineMap, AffineSubspace.signedInfDist_eq_signedDist_of_mem, Affine.Simplex.signedInfDist_apply_self, coe_injective, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, Affine.Simplex.orthogonalProjectionSpan_congr, signedDist_triangle_left, coe_comp, hasStrictFDerivAt, EuclideanGeometry.orthogonalProjection_subtype, EuclideanGeometry.two_zsmul_oangle_self_orthogonalProjection, Affine.Simplex.ExcenterExists.sign_signedInfDist_lineMap_excenter_touchpoint, contDiff, EuclideanGeometry.orthogonalProjection_vadd_eq_self, toContinuousMap_coe, signedDist_smul_of_pos, EuclideanGeometry.oangle_orthogonalProjection_self, apply_lineMap', signedDist_lineMap_lineMap, EuclideanGeometry.dist_orthogonalProjection_eq_dist_iff_eq_of_mem, AffineSubspace.abs_signedInfDist_eq_dist_of_mem_affineSpan_insert, signedDist_vadd_left_swap, Affine.Simplex.orthogonalProjection_circumcenter, Affine.Simplex.exists_forall_dist_eq_iff_exists_excenterExists_and_eq_excenter, instContinuousMapClass, signedDist_vadd_right, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_exists_dist_eq, map_vadd, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, signedDist_lineMap_left, coe_const, EuclideanGeometry.dist_sq_eq_dist_orthogonalProjection_sq_add_dist_orthogonalProjection_sq, coe_zero, signedDist_anticomm, add_apply, coe_id, EuclideanGeometry.orthogonalProjection_vadd_smul_vsub_orthogonalProjection, signedDist_triangle_right, Affine.Simplex.orthogonalProjectionSpan_faceOpposite_eq_point_rev, EuclideanGeometry.dist_orthogonalProjection_eq_infNndist, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangent, coe_smul, EuclideanGeometry.orthogonalProjection_eq_orthogonalProjection_iff_vsub_mem, congr_fun, signedDist_self, hasFDerivAtFilter, signedDist_vsub_self, Affine.Simplex.exists_forall_signedInfDist_eq_iff_eq_incenter, signedDist_smul, EuclideanGeometry.dist_eq_iff_dist_orthogonalProjection_eq, hasFDerivAt, norm_image_zero_le, apply_lineMap, EuclideanGeometry.dist_orthogonalProjection_eq_infDist, EuclideanGeometry.orthogonalProjection_mem, Affine.Simplex.orthogonalProjectionSpan_restrict, signedDist_smul_of_neg, EuclideanGeometry.dist_orthogonalProjection_eq_zero_iff, Affine.Simplex.sign_signedInfDist_touchpoint_empty, signedDist_vadd_right_swap, fderivWithin, EuclideanGeometry.exists_dist_eq_iff_exists_dist_orthogonalProjection_eq, EuclideanGeometry.Sphere.IsTangentAt.eq_orthogonalProjection, sub_apply, EuclideanGeometry.reflection_eq_iff_orthogonalProjection_eq, EuclideanGeometry.orthogonalProjection_orthogonalProjection, EuclideanGeometry.orthogonalProjection_vsub_mem_direction, signedDist_vadd_left, Affine.Simplex.orthogonalProjection_eq_circumcenter_of_dist_eq, EuclideanGeometry.vsub_orthogonalProjection_mem_direction, Affine.Simplex.coe_orthogonalProjection_vadd_smul_vsub_orthogonalProjection, EuclideanGeometry.Sphere.IsTangent.isTangentAt, contLinear_map_vsub, EuclideanGeometry.reflection_apply', surjOn_extremePoints_image, differentiableOn, coe_continuousMap_mk, EuclideanGeometry.oangle_self_orthogonalProjection, norm_comp_le, signedDist_right_lineMap, Affine.Simplex.abs_signedInfDist_eq_dist_of_mem_affineSpan_range, Affine.Simplex.ExcenterExists.signedInfDist_excenter, Affine.Simplex.orthogonalProjectionSpan_reindex, AffineSubspace.signedInfDist_def, prod_apply, signedDist_lineMap_right, Affine.Simplex.orthogonalProjectionSpan_eulerPoint_mem_ninePointCircle, vsub_apply, Affine.Simplex.sign_signedInfDist_incenter, Affine.Simplex.ExcenterExists.sign_signedInfDist_excenter, hasFDerivWithinAt, Affine.Simplex.signedInfDist_affineCombination, EuclideanGeometry.angle_self_orthogonalProjection, signedDist_eq_dist_iff_vsub_mem_span, EuclideanGeometry.orthogonalProjection_eq_self_iff, Affine.Simplex.ExcenterExists.signedInfDist_excenter_eq_mul_sum_inv, EuclideanGeometry.orthogonalProjection_vsub_mem_direction_orthogonal, Affine.Simplex.exists_forall_signedInfDist_eq_iff_excenterExists_and_eq_excenter, EuclideanGeometry.eq_orthogonalProjection_of_eq_subspace, EuclideanGeometry.orthogonalProjection_apply, AffineSubspace.signedInfDist_apply_self, EuclideanGeometry.orthogonalProjection_vsub_orthogonalProjection, EuclideanGeometry.orthogonalProjection_mem_orthogonal, toConstProdContinuousLinearMap_fst, EuclideanGeometry.two_zsmul_oangle_orthogonalProjection_self, abs_signedDist_le_dist, AffineSubspace.signedInfDist_apply_of_mem, EuclideanGeometry.coe_orthogonalProjection_eq_iff_mem, ContinuousLinearMap.coe_toContinuousAffineMap, continuous, Affine.Simplex.signedInfDist_apply_of_ne, AffineIsometry.coe_toContinuousAffineMap, signedDist_left_lineMap, coe_neg, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.orthogonalProjection_eq_iff_mem, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, differentiableAt, coe_prod, coe_prodMap, EuclideanGeometry.Sphere.dist_orthogonalProjection_eq_radius_iff_isTangentAt, EuclideanGeometry.dist_set_eq_iff_dist_orthogonalProjection_eq, signedDist_vadd_vadd, vadd_apply, EuclideanGeometry.orthogonalProjection_mem_subspace_eq_self, Affine.Simplex.signedInfDist_incenter
|
instInhabited π | CompOp | β |
instModuleOfSMulCommClassOfContinuousConstSMul π | CompOp | 42 mathmath: lineMap_apply', signedDist_right_congr, signedDist_left_congr, signedDist_triangle, signedDist_linear_apply_apply, signedDist_le_dist, signedDist_apply_apply, signedDist_eq_zero_of_orthogonal, AffineSubspace.signedInfDist_eq_signedDist_of_mem, signedDist_zero, AffineSubspace.signedInfDist_eq_signedDist_orthogonalProjection, signedDist_triangle_left, signedDist_smul_of_pos, signedDist_lineMap_lineMap, signedDist_vadd_left_swap, signedDist_vadd_right, signedDist_lineMap_left, signedDist_anticomm, signedDist_triangle_right, abs_signedDist_eq_dist_iff_vsub_mem_span, signedDist_neg, signedDist_vsub_self_rev, signedDist_linear_apply, signedDist_self, signedDist_vsub_self, signedDist_smul, signedDist_smul_of_neg, signedDist_vadd_right_swap, signedDist_vadd_left, signedDist_apply_linear_apply, AffineSubspace.signedInfDist_singleton, signedDist_right_lineMap, AffineSubspace.signedInfDist_def, signedDist_lineMap_right, signedDist_apply, signedDist_eq_dist_iff_vsub_mem_span, toConstProdContinuousLinearMap_fst, abs_signedDist_le_dist, signedDist_apply_linear, signedDist_left_lineMap, signedDist_vadd_vadd, toConstProdContinuousLinearMap_snd
|
instMulAction π | CompOp | β |
instNeg π | CompOp | 3 mathmath: neg_contLinear, neg_apply, coe_neg
|
instSMul π | CompOp | 4 mathmath: smul_apply, smul_contLinear, coe_smul, instIsCentralScalar
|
instSub π | CompOp | 3 mathmath: coe_sub, sub_contLinear, sub_apply
|
instZero π | CompOp | 3 mathmath: zero_apply, coe_zero, zero_contLinear
|
lineMap π | CompOp | 4 mathmath: lintegral_fderiv_lineMap_eq_edist, coe_lineMap_eq, lineMap_toAffineMap, apply_lineMap'
|
prod π | CompOp | 4 mathmath: prod_contLinear, prod_apply, prod_toAffineMap, coe_prod
|
prodMap π | CompOp | 5 mathmath: prodMap_apply, ContinuousAffineEquiv.prodCongr_toContinuousAffineMap, prodMap_toAffineMap, prodMap_contLinear, coe_prodMap
|
toAffineMap π | CompOp | 18 mathmath: toFun_eq_coe, prodMap_toAffineMap, lineMap_toAffineMap, vadd_toAffineMap, coe_linear_eq_coe_contLinear, coe_toAffineMap, AffineSubspace.signedInfDist_eq_const_of_mem, AffineSubspace.subtypeA_toAffineMap, coe_contLinear_eq_linear, coe_contLinear, signedDist_apply_linear_apply, vsub_toAffineMap, EuclideanGeometry.orthogonalProjection_linear, prod_toAffineMap, signedDist_apply_linear, ContinuousAffineEquiv.toContinuousAffineMap_toAffineMap, coe_toAffineMap_mk, cont
|
toContinuousMap π | CompOp | 2 mathmath: toContinuousMap_coe, ContinuousAffineEquiv.toContinuousAffineMap_toContinuousMap
|