Documentation Verification Report

Real

๐Ÿ“ Source: Mathlib/Topology/Algebra/InfiniteSum/Real.lean

Statistics

MetricCount
Definitions0
Theoremstsum_le_of_sum_le, tsum_le_of_sum_range_le, tsum_lt_tsum_of_nonneg, cauchySeq_of_dist_le_of_summable, cauchySeq_of_summable_dist, dist_le_tsum_dist_of_tendsto, dist_le_tsum_dist_of_tendstoโ‚€, dist_le_tsum_of_dist_le_of_tendsto, dist_le_tsum_of_dist_le_of_tendstoโ‚€, not_summable_iff_tendsto_nat_atTop_of_nonneg, summable_iff_not_tendsto_nat_atTop_of_nonneg, summable_of_sum_le, summable_of_sum_range_le, summable_partition, summable_prod_of_nonneg, summable_sigma_of_nonneg
16
Total16

Real

Theorems

NameKindAssumesProvesValidatesDepends On
tsum_le_of_sum_le ๐Ÿ“–mathematicalPi.hasLe
Real
instLE
Pi.instZero
instZero
Finset.sum
instAddCommMonoid
tsum
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SummationFilter.unconditional
โ€”Summable.tsum_le_of_sum_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SummationFilter.instNeBotUnconditional
summable_of_sum_le
tsum_le_of_sum_range_le ๐Ÿ“–mathematicalReal
instLE
instZero
Finset.sum
instAddCommMonoid
Finset.range
tsum
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SummationFilter.unconditional
โ€”Summable.tsum_le_of_sum_range_le
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
summable_of_sum_range_le

Summable

Theorems

NameKindAssumesProvesValidatesDepends On
tsum_lt_tsum_of_nonneg ๐Ÿ“–mathematicalReal
Real.instLE
Real.instZero
Real.instLT
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
tsumโ€”tsum_lt_tsum
Real.instIsOrderedAddMonoid
instIsTopologicalAddGroupReal
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
of_nonneg_of_le

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_of_dist_le_of_summable ๐Ÿ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
CauchySeq
Nat.instPreorder
โ€”CanLift.prf
Pi.canLift
NNReal.canLift
LE.le.trans
dist_nonneg
cauchySeq_of_edist_le_of_summable
cauchySeq_of_summable_dist ๐Ÿ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
SummationFilter.unconditional
CauchySeq
Nat.instPreorder
โ€”cauchySeq_of_dist_le_of_summable
le_rfl
dist_le_tsum_dist_of_tendsto ๐Ÿ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
SummationFilter.unconditional
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
Real.instLE
tsum
โ€”dist_le_tsum_of_dist_le_of_tendsto
le_rfl
dist_le_tsum_dist_of_tendstoโ‚€ ๐Ÿ“–mathematicalSummable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
SummationFilter.unconditional
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
Real.instLE
tsum
โ€”zero_add
dist_le_tsum_dist_of_tendsto
dist_le_tsum_of_dist_le_of_tendsto ๐Ÿ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
tsumโ€”le_of_tendsto
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.dist
tendsto_const_nhds
Filter.eventually_atTop
le_trans
dist_le_Ico_sum_of_dist_le
Finset.sum_Ico_eq_sum_range
Summable.sum_le_tsum
Real.instIsOrderedAddMonoid
SummationFilter.instNeBotUnconditional
SummationFilter.instLeAtTopUnconditional
dist_nonneg
Summable.comp_injective
instIsUniformAddGroupReal
Real.instCompleteSpace
add_right_injective
AddLeftCancelSemigroup.toIsLeftCancelAdd
dist_le_tsum_of_dist_le_of_tendstoโ‚€ ๐Ÿ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
tsumโ€”zero_add
dist_le_tsum_of_dist_le_of_tendsto
not_summable_iff_tendsto_nat_atTop_of_nonneg ๐Ÿ“–mathematicalReal
Real.instLE
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Filter.Tendsto
Finset.sum
Finset.range
Filter.atTop
Nat.instPreorder
Real.instPreorder
โ€”CanLift.prf
Pi.canLift
NNReal.canLift
Finset.sum_congr
NNReal.not_summable_iff_tendsto_nat_atTop
summable_iff_not_tendsto_nat_atTop_of_nonneg ๐Ÿ“–mathematicalReal
Real.instLE
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Filter.Tendsto
Finset.sum
Finset.range
Filter.atTop
Nat.instPreorder
Real.instPreorder
โ€”not_iff_not
not_summable_iff_tendsto_nat_atTop_of_nonneg
summable_of_sum_le ๐Ÿ“–mathematicalPi.hasLe
Real
Real.instLE
Pi.instZero
Real.instZero
Finset.sum
Real.instAddCommMonoid
Summable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
โ€”tendsto_atTop_ciSup
LinearOrder.supConvergenceClass
instOrderTopologyReal
Finset.sum_mono_set_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
summable_of_sum_range_le ๐Ÿ“–mathematicalReal
Real.instLE
Real.instZero
Finset.sum
Real.instAddCommMonoid
Finset.range
Summable
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
โ€”summable_iff_not_tendsto_nat_atTop_of_nonneg
Filter.exists_lt_of_tendsto_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
lt_irrefl
LT.lt.trans_le
summable_partition ๐Ÿ“–mathematicalPi.hasLe
Real
Real.instLE
Pi.instZero
Real.instZero
ExistsUnique
Set
Set.instMembership
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
Set.Elem
tsum
โ€”Equiv.summable_iff
summable_sigma_of_nonneg
summable_prod_of_nonneg ๐Ÿ“–mathematicalPi.hasLe
Real
Real.instLE
Pi.instZero
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
tsum
โ€”Equiv.summable_iff
summable_sigma_of_nonneg
summable_sigma_of_nonneg ๐Ÿ“–mathematicalReal
Real.instLE
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
SummationFilter.unconditional
tsum
โ€”CanLift.prf
Pi.canLift
NNReal.canLift
NNReal.summable_sigma

---

โ† Back to Index