Infinite sum in the reals #
This file provides lemmas about Cauchy sequences in terms of infinite sums and infinite sums valued in the reals.
theorem
cauchySeq_of_dist_le_of_summable
{Ξ± : Type u_1}
[PseudoMetricSpace Ξ±]
{f : β β Ξ±}
(d : β β β)
(hf : β (n : β), dist (f n) (f n.succ) β€ d n)
(hd : Summable d)
:
If the distance between consecutive points of a sequence is estimated by a summable series, then the original sequence is a Cauchy sequence.
theorem
cauchySeq_of_summable_dist
{Ξ± : Type u_1}
[PseudoMetricSpace Ξ±]
{f : β β Ξ±}
(h : Summable fun (n : β) => dist (f n) (f n.succ))
:
theorem
dist_le_tsum_of_dist_le_of_tendstoβ
{Ξ± : Type u_1}
[PseudoMetricSpace Ξ±]
{f : β β Ξ±}
{a : Ξ±}
(d : β β β)
(hf : β (n : β), dist (f n) (f n.succ) β€ d n)
(hd : Summable d)
(ha : Filter.Tendsto f Filter.atTop (nhds a))
:
theorem
dist_le_tsum_dist_of_tendstoβ
{Ξ± : Type u_1}
[PseudoMetricSpace Ξ±]
{f : β β Ξ±}
{a : Ξ±}
(h : Summable fun (n : β) => dist (f n) (f n.succ))
(ha : Filter.Tendsto f Filter.atTop (nhds a))
:
theorem
not_summable_iff_tendsto_nat_atTop_of_nonneg
{f : β β β}
(hf : β (n : β), 0 β€ f n)
:
Β¬Summable f β Filter.Tendsto (fun (n : β) => β i β Finset.range n, f i) Filter.atTop Filter.atTop
theorem
summable_iff_not_tendsto_nat_atTop_of_nonneg
{f : β β β}
(hf : β (n : β), 0 β€ f n)
:
Summable f β Β¬Filter.Tendsto (fun (n : β) => β i β Finset.range n, f i) Filter.atTop Filter.atTop
theorem
summable_of_sum_range_le
{f : β β β}
{c : β}
(hf : β (n : β), 0 β€ f n)
(h : β (n : β), β i β Finset.range n, f i β€ c)
:
Summable f
theorem
Summable.tsum_lt_tsum_of_nonneg
{i : β}
{f g : β β β}
(h0 : β (b : β), 0 β€ f b)
(h : β (b : β), f b β€ g b)
(hi : f i < g i)
(hg : Summable g)
:
If a sequence f with non-negative terms is dominated by a sequence g with summable
series and at least one term of f is strictly smaller than the corresponding term in g,
then the series of f is strictly smaller than the series of g.