Documentation

Mathlib.Topology.Algebra.InfiniteSum.Real

Infinite sum in the reals #

This file provides lemmas about Cauchy sequences in terms of infinite sums and infinite sums valued in the reals.

theorem cauchySeq_of_dist_le_of_summable {Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β„• β†’ Ξ±} (d : β„• β†’ ℝ) (hf : βˆ€ (n : β„•), dist (f n) (f n.succ) ≀ d n) (hd : Summable d) :

If the distance between consecutive points of a sequence is estimated by a summable series, then the original sequence is a Cauchy sequence.

theorem cauchySeq_of_summable_dist {Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β„• β†’ Ξ±} (h : Summable fun (n : β„•) => dist (f n) (f n.succ)) :
theorem dist_le_tsum_of_dist_le_of_tendsto {Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β„• β†’ Ξ±} (d : β„• β†’ ℝ) (hf : βˆ€ (n : β„•), dist (f n) (f n.succ) ≀ d n) (hd : Summable d) {a : Ξ±} (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β„•) :
dist (f n) a ≀ βˆ‘' (m : β„•), d (n + m)
theorem dist_le_tsum_of_dist_le_of_tendstoβ‚€ {Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β„• β†’ Ξ±} {a : Ξ±} (d : β„• β†’ ℝ) (hf : βˆ€ (n : β„•), dist (f n) (f n.succ) ≀ d n) (hd : Summable d) (ha : Filter.Tendsto f Filter.atTop (nhds a)) :
dist (f 0) a ≀ tsum d
theorem dist_le_tsum_dist_of_tendsto {Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β„• β†’ Ξ±} {a : Ξ±} (h : Summable fun (n : β„•) => dist (f n) (f n.succ)) (ha : Filter.Tendsto f Filter.atTop (nhds a)) (n : β„•) :
dist (f n) a ≀ βˆ‘' (m : β„•), dist (f (n + m)) (f (n + m).succ)
theorem dist_le_tsum_dist_of_tendstoβ‚€ {Ξ± : Type u_1} [PseudoMetricSpace Ξ±] {f : β„• β†’ Ξ±} {a : Ξ±} (h : Summable fun (n : β„•) => dist (f n) (f n.succ)) (ha : Filter.Tendsto f Filter.atTop (nhds a)) :
dist (f 0) a ≀ βˆ‘' (n : β„•), dist (f n) (f n.succ)
theorem summable_sigma_of_nonneg {Ξ± : Type u_4} {Ξ² : Ξ± β†’ Type u_3} {f : (x : Ξ±) Γ— Ξ² x β†’ ℝ} (hf : βˆ€ (x : (x : Ξ±) Γ— Ξ² x), 0 ≀ f x) :
Summable f ↔ (βˆ€ (x : Ξ±), Summable fun (y : Ξ² x) => f ⟨x, y⟩) ∧ Summable fun (x : Ξ±) => βˆ‘' (y : Ξ² x), f ⟨x, y⟩
theorem summable_partition {Ξ± : Type u_3} {Ξ² : Type u_4} {f : Ξ² β†’ ℝ} (hf : 0 ≀ f) {s : Ξ± β†’ Set Ξ²} (hs : βˆ€ (i : Ξ²), βˆƒ! j : Ξ±, i ∈ s j) :
Summable f ↔ (βˆ€ (j : Ξ±), Summable fun (i : ↑(s j)) => f ↑i) ∧ Summable fun (j : Ξ±) => βˆ‘' (i : ↑(s j)), f ↑i
theorem summable_prod_of_nonneg {Ξ± : Type u_3} {Ξ² : Type u_4} {f : Ξ± Γ— Ξ² β†’ ℝ} (hf : 0 ≀ f) :
Summable f ↔ (βˆ€ (x : Ξ±), Summable fun (y : Ξ²) => f (x, y)) ∧ Summable fun (x : Ξ±) => βˆ‘' (y : Ξ²), f (x, y)
theorem summable_of_sum_le {ΞΉ : Type u_3} {f : ΞΉ β†’ ℝ} {c : ℝ} (hf : 0 ≀ f) (h : βˆ€ (u : Finset ΞΉ), βˆ‘ x ∈ u, f x ≀ c) :
theorem summable_of_sum_range_le {f : β„• β†’ ℝ} {c : ℝ} (hf : βˆ€ (n : β„•), 0 ≀ f n) (h : βˆ€ (n : β„•), βˆ‘ i ∈ Finset.range n, f i ≀ c) :
theorem Real.tsum_le_of_sum_le {ΞΉ : Type u_3} {f : ΞΉ β†’ ℝ} {c : ℝ} (hf : 0 ≀ f) (h : βˆ€ (u : Finset ΞΉ), βˆ‘ x ∈ u, f x ≀ c) :
βˆ‘' (x : ΞΉ), f x ≀ c
theorem Real.tsum_le_of_sum_range_le {f : β„• β†’ ℝ} {c : ℝ} (hf : βˆ€ (n : β„•), 0 ≀ f n) (h : βˆ€ (n : β„•), βˆ‘ i ∈ Finset.range n, f i ≀ c) :
βˆ‘' (n : β„•), f n ≀ c
theorem Summable.tsum_lt_tsum_of_nonneg {i : β„•} {f g : β„• β†’ ℝ} (h0 : βˆ€ (b : β„•), 0 ≀ f b) (h : βˆ€ (b : β„•), f b ≀ g b) (hi : f i < g i) (hg : Summable g) :
βˆ‘' (n : β„•), f n < βˆ‘' (n : β„•), g n

If a sequence f with non-negative terms is dominated by a sequence g with summable series and at least one term of f is strictly smaller than the corresponding term in g, then the series of f is strictly smaller than the series of g.