Results about big operators over intervals #
We prove results about big operators over intervals.
theorem
Finset.prod_Ico_add'
{α : Type u_1}
{M : Type u_3}
[CommMonoid M]
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
theorem
Finset.sum_Ico_add'
{α : Type u_1}
{M : Type u_3}
[AddCommMonoid M]
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
theorem
Finset.prod_Ico_add
{α : Type u_1}
{M : Type u_3}
[CommMonoid M]
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
theorem
Finset.sum_Ico_add
{α : Type u_1}
{M : Type u_3}
[AddCommMonoid M]
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
(f : α → M)
(a b c : α)
:
@[simp]
theorem
Finset.prod_Ico_add_right_sub_eq
{α : Type u_1}
{M : Type u_3}
[CommMonoid M]
{f : α → M}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[Sub α]
[OrderedSub α]
(a b c : α)
:
@[simp]
theorem
Finset.sum_Ico_add_right_sub_eq
{α : Type u_1}
{M : Type u_3}
[AddCommMonoid M]
{f : α → M}
[AddCommMonoid α]
[PartialOrder α]
[IsOrderedCancelAddMonoid α]
[ExistsAddOfLE α]
[LocallyFiniteOrder α]
[Sub α]
[OrderedSub α]
(a b c : α)
:
theorem
Finset.prod_range_eq_mul_Ico
{M : Type u_3}
[CommMonoid M]
(f : ℕ → M)
{n : ℕ}
(hn : 0 < n)
:
theorem
Finset.sum_range_eq_add_Ico
{M : Type u_3}
[AddCommMonoid M]
(f : ℕ → M)
{n : ℕ}
(hn : 0 < n)
:
The two ways of summing over (i, j) in the range a ≤ i ≤ j < b are equal.
The two ways of summing over (i, j) in the range a ≤ i < j < b are equal.
@[simp]
Gauss' summation formula
Gauss' summation formula