Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Algebra/SeparationQuotient/Basic.lean

Statistics

MetricCount
DefinitionsinstAdd, instAddAction, instAddCommGroup, instAddCommMagma, instAddCommMonoid, instAddCommSemigroup, instAddGroup, instAddMonoid, instAddSemigroup, instAddZeroClass, instAlgebra, instCommGroup, instCommMagma, instCommMonoid, instCommMonoidWithZero, instCommRing, instCommSemigroup, instCommSemiring, instDistrib, instDistribMulAction, instDistribSMul, instDiv, instGroup, instHasDistribNeg, instIntCast, instInv, instInvOneClass, instInvolutiveInv, instInvolutiveNeg, instModule, instMonoid, instMonoidWithZero, instMul, instMulAction, instMulDistribMulAction, instMulOneClass, instMulZeroClass, instMulZeroOneClass, instNSmul, instNatCast, instNeg, instNegZeroClass, instNonAssocRing, instNonAssocSemiring, instNonUnitalCommRing, instNonUnitalCommSemiring, instNonUnitalNonAssocCommRing, instNonUnitalNonAssocCommSemiring, instNonUnitalNonAssocRing, instNonUnitalRing, instNonUnitalSemiring, instNonUnitalnonAssocSemiring, instPow, instRing, instSMul, instSMulZeroClass, instSemigroup, instSemigroupWithZero, instSemiring, instSub, instVAdd, instZPow, instZSMul, liftCLM, mkAddMonoidHom, mkCLM, mkMonoidHom, mkRingHom
68
TheoremsinstContinuousAdd, instContinuousConstSMul, instContinuousConstVAdd, instContinuousDiv, instContinuousInv, instContinuousMul, instContinuousNeg, instContinuousSMul, instContinuousSub, instIsCentralScalar, instIsCentralVAdd, instIsPretransitiveSMul, instIsPretransitiveVAdd, instIsScalarTower, instIsTopologicalAddGroup, instIsTopologicalGroup, instIsUniformAddGroup, instIsUniformGroup, instLeftDistribClass, instRightDistribClass, instSMulCommClass, instVAddAssocClass, instVAddCommClass, liftCLM_apply, liftCLM_mk, mkAddMonoidHom_apply, mkCLM_apply, mkMonoidHom_apply, mkRingHom_apply, mk_add, mk_algebraMap, mk_div, mk_intCast, mk_inv, mk_mul, mk_natCast, mk_neg, mk_nsmul, mk_ofNat, mk_pow, mk_smul, mk_sub, mk_vadd, mk_zpow, mk_zsmul
45
Total113

SeparationQuotient

Definitions

NameCategoryTheorems
instAdd πŸ“–CompOp
4 mathmath: mk_add, instContinuousAdd, instRightDistribClass, instLeftDistribClass
instAddAction πŸ“–CompOpβ€”
instAddCommGroup πŸ“–CompOpβ€”
instAddCommMagma πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOp
14 mathmath: mkCLM_comp_outCLM, outCLM_uniformContinuous, outCLM_isUniformEmbedding, exists_out_continuousLinearMap, mk_outCLM, postcomp_mkCLM_surjective, mk_comp_outCLM, liftCLM_apply, isEmbedding_outCLM, liftCLM_mk, mkCLM_apply, instModuleFinite, outCLM_injective, outCLM_isUniformInducing
instAddCommSemigroup πŸ“–CompOpβ€”
instAddGroup πŸ“–CompOp
2 mathmath: instIsUniformAddGroup, instIsTopologicalAddGroup
instAddMonoid πŸ“–CompOp
2 mathmath: liftContinuousAddCommMonoidHom_mk, liftNormedAddGroupHom_apply
instAddSemigroup πŸ“–CompOpβ€”
instAddZeroClass πŸ“–CompOp
2 mathmath: mkAddMonoidHom_apply, normedMk_apply
instAlgebra πŸ“–CompOp
1 mathmath: mk_algebraMap
instCommGroup πŸ“–CompOpβ€”
instCommMagma πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOpβ€”
instCommMonoidWithZero πŸ“–CompOpβ€”
instCommRing πŸ“–CompOpβ€”
instCommSemigroup πŸ“–CompOpβ€”
instCommSemiring πŸ“–CompOpβ€”
instDistrib πŸ“–CompOpβ€”
instDistribMulAction πŸ“–CompOpβ€”
instDistribSMul πŸ“–CompOpβ€”
instDiv πŸ“–CompOp
2 mathmath: mk_div, instContinuousDiv
instGroup πŸ“–CompOp
2 mathmath: instIsTopologicalGroup, instIsUniformGroup
instHasDistribNeg πŸ“–CompOpβ€”
instIntCast πŸ“–CompOp
1 mathmath: mk_intCast
instInv πŸ“–CompOp
2 mathmath: instContinuousInv, mk_inv
instInvOneClass πŸ“–CompOpβ€”
instInvolutiveInv πŸ“–CompOpβ€”
instInvolutiveNeg πŸ“–CompOpβ€”
instModule πŸ“–CompOp
14 mathmath: mkCLM_comp_outCLM, outCLM_uniformContinuous, outCLM_isUniformEmbedding, exists_out_continuousLinearMap, mk_outCLM, postcomp_mkCLM_surjective, mk_comp_outCLM, liftCLM_apply, isEmbedding_outCLM, liftCLM_mk, mkCLM_apply, instModuleFinite, outCLM_injective, outCLM_isUniformInducing
instMonoid πŸ“–CompOp
1 mathmath: liftContinuousCommMonoidHom_mk
instMonoidWithZero πŸ“–CompOpβ€”
instMul πŸ“–CompOp
4 mathmath: mk_mul, instContinuousMul, instRightDistribClass, instLeftDistribClass
instMulAction πŸ“–CompOpβ€”
instMulDistribMulAction πŸ“–CompOpβ€”
instMulOneClass πŸ“–CompOp
1 mathmath: mkMonoidHom_apply
instMulZeroClass πŸ“–CompOpβ€”
instMulZeroOneClass πŸ“–CompOpβ€”
instNSmul πŸ“–CompOp
1 mathmath: mk_nsmul
instNatCast πŸ“–CompOp
2 mathmath: mk_natCast, mk_ofNat
instNeg πŸ“–CompOp
2 mathmath: instContinuousNeg, mk_neg
instNegZeroClass πŸ“–CompOpβ€”
instNonAssocRing πŸ“–CompOpβ€”
instNonAssocSemiring πŸ“–CompOp
1 mathmath: mkRingHom_apply
instNonUnitalCommRing πŸ“–CompOpβ€”
instNonUnitalCommSemiring πŸ“–CompOpβ€”
instNonUnitalNonAssocCommRing πŸ“–CompOpβ€”
instNonUnitalNonAssocCommSemiring πŸ“–CompOpβ€”
instNonUnitalNonAssocRing πŸ“–CompOpβ€”
instNonUnitalRing πŸ“–CompOpβ€”
instNonUnitalSemiring πŸ“–CompOpβ€”
instNonUnitalnonAssocSemiring πŸ“–CompOpβ€”
instPow πŸ“–CompOp
1 mathmath: mk_pow
instRing πŸ“–CompOpβ€”
instSMul πŸ“–CompOp
8 mathmath: mk_smul, instIsScalarTower, instIsBoundedSMulSeparationQuotient, instIsCentralScalar, instIsPretransitiveSMul, instContinuousConstSMul, instSMulCommClass, instContinuousSMul
instSMulZeroClass πŸ“–CompOpβ€”
instSemigroup πŸ“–CompOpβ€”
instSemigroupWithZero πŸ“–CompOpβ€”
instSemiring πŸ“–CompOp
1 mathmath: mk_algebraMap
instSub πŸ“–CompOp
2 mathmath: mk_sub, instContinuousSub
instVAdd πŸ“–CompOp
6 mathmath: instIsPretransitiveVAdd, instIsCentralVAdd, mk_vadd, instVAddCommClass, instVAddAssocClass, instContinuousConstVAdd
instZPow πŸ“–CompOp
1 mathmath: mk_zpow
instZSMul πŸ“–CompOp
1 mathmath: mk_zsmul
liftCLM πŸ“–CompOp
2 mathmath: liftCLM_apply, liftCLM_mk
mkAddMonoidHom πŸ“–CompOp
2 mathmath: mkAddMonoidHom_apply, normedMk_apply
mkCLM πŸ“–CompOp
4 mathmath: mkCLM_comp_outCLM, exists_out_continuousLinearMap, postcomp_mkCLM_surjective, mkCLM_apply
mkMonoidHom πŸ“–CompOp
1 mathmath: mkMonoidHom_apply
mkRingHom πŸ“–CompOp
1 mathmath: mkRingHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
instContinuousAdd πŸ“–mathematicalβ€”ContinuousAdd
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instAdd
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
continuous_add
instContinuousConstSMul πŸ“–mathematicalβ€”ContinuousConstSMul
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instSMul
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
ContinuousConstSMul.continuous_const_smul
instContinuousConstVAdd πŸ“–mathematicalβ€”ContinuousConstVAdd
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instVAdd
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
ContinuousConstVAdd.continuous_const_vadd
instContinuousDiv πŸ“–mathematicalβ€”ContinuousDiv
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instDiv
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
ContinuousDiv.continuous_div'
instContinuousInv πŸ“–mathematicalβ€”ContinuousInv
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instInv
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
ContinuousInv.continuous_inv
instContinuousMul πŸ“–mathematicalβ€”ContinuousMul
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instMul
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
continuous_mul
instContinuousNeg πŸ“–mathematicalβ€”ContinuousNeg
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instNeg
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
ContinuousNeg.continuous_neg
instContinuousSMul πŸ“–mathematicalβ€”ContinuousSMul
SeparationQuotient
instSMul
ContinuousSMul.continuousConstSMul
instTopologicalSpaceSeparationQuotient
β€”ContinuousSMul.continuousConstSMul
Topology.IsQuotientMap.continuous_iff
IsOpenQuotientMap.isQuotientMap
IsOpenQuotientMap.prodMap
IsOpenQuotientMap.id
Continuous.comp
ContinuousSMul.continuous_smul
instContinuousSub πŸ“–mathematicalβ€”ContinuousSub
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instSub
β€”Topology.IsQuotientMap.continuous_iff
Continuous.comp
ContinuousSub.continuous_sub
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
SeparationQuotient
instSMul
MulOpposite
ContinuousConstSMul.op
β€”ContinuousConstSMul.op
Function.Surjective.forall
IsCentralScalar.op_smul_eq_smul
instIsCentralVAdd πŸ“–mathematicalβ€”IsCentralVAdd
SeparationQuotient
instVAdd
AddOpposite
ContinuousConstVAdd.op
β€”ContinuousConstVAdd.op
Function.Surjective.forall
IsCentralVAdd.op_vadd_eq_vadd
instIsPretransitiveSMul πŸ“–mathematicalβ€”MulAction.IsPretransitive
SeparationQuotient
instSMul
β€”Function.Surjective.forallβ‚‚
MulAction.exists_smul_eq
instIsPretransitiveVAdd πŸ“–mathematicalβ€”AddAction.IsPretransitive
SeparationQuotient
instVAdd
β€”Function.Surjective.forallβ‚‚
AddAction.exists_vadd_eq
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
SeparationQuotient
instSMul
β€”Function.Surjective.forall
smul_assoc
instIsTopologicalAddGroup πŸ“–mathematicalβ€”IsTopologicalAddGroup
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instAddGroup
β€”instContinuousAdd
IsTopologicalAddGroup.toContinuousAdd
instContinuousNeg
IsTopologicalAddGroup.toContinuousNeg
instIsTopologicalGroup πŸ“–mathematicalβ€”IsTopologicalGroup
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instGroup
β€”instContinuousMul
IsTopologicalGroup.toContinuousMul
instContinuousInv
IsTopologicalGroup.toContinuousInv
instIsUniformAddGroup πŸ“–mathematicalβ€”IsUniformAddGroup
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
instAddGroup
IsUniformAddGroup.to_topologicalAddGroup
β€”IsUniformAddGroup.to_topologicalAddGroup
uniformContinuous_domβ‚‚
UniformContinuous.comp
uniformContinuous_sub
instIsUniformGroup πŸ“–mathematicalβ€”IsUniformGroup
SeparationQuotient
UniformSpace.toTopologicalSpace
instUniformSpace
instGroup
IsUniformGroup.to_topologicalGroup
β€”IsUniformGroup.to_topologicalGroup
uniformContinuous_domβ‚‚
UniformContinuous.comp
uniformContinuous_div
instLeftDistribClass πŸ“–mathematicalβ€”LeftDistribClass
SeparationQuotient
instMul
instAdd
β€”Function.Surjective.leftDistribClass
mk_add
mk_mul
instRightDistribClass πŸ“–mathematicalβ€”RightDistribClass
SeparationQuotient
instMul
instAdd
β€”Function.Surjective.rightDistribClass
mk_add
mk_mul
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
SeparationQuotient
instSMul
β€”Function.Surjective.smulCommClass
mk_smul
instVAddAssocClass πŸ“–mathematicalβ€”VAddAssocClass
SeparationQuotient
instVAdd
β€”Function.Surjective.forall
vadd_assoc
instVAddCommClass πŸ“–mathematicalβ€”VAddCommClass
SeparationQuotient
instVAdd
β€”Function.Surjective.vaddCommClass
mk_vadd
liftCLM_apply πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
ContinuousLinearMap.funLike
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instAddCommMonoid
instModule
liftCLM
lift
β€”β€”
liftCLM_mk πŸ“–mathematicalDFunLike.coe
ContinuousLinearMap
ContinuousLinearMap.funLike
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instAddCommMonoid
instModule
liftCLM
β€”β€”
mkAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
SeparationQuotient
AddZeroClass.toAddZero
instAddZeroClass
AddMonoidHom.instFunLike
mkAddMonoidHom
β€”β€”
mkCLM_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
SeparationQuotient
instTopologicalSpaceSeparationQuotient
instAddCommMonoid
instModule
ContinuousLinearMap.funLike
mkCLM
β€”β€”
mkMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
SeparationQuotient
MulOneClass.toMulOne
instMulOneClass
MonoidHom.instFunLike
mkMonoidHom
β€”β€”
mkRingHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
SeparationQuotient
instNonAssocSemiring
RingHom.instFunLike
mkRingHom
β€”β€”
mk_add πŸ“–mathematicalβ€”SeparationQuotient
instAdd
β€”β€”
mk_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
RingHom.instFunLike
algebraMap
SeparationQuotient
instSemiring
instAlgebra
β€”β€”
mk_div πŸ“–mathematicalβ€”SeparationQuotient
instDiv
β€”β€”
mk_intCast πŸ“–mathematicalβ€”SeparationQuotient
instIntCast
β€”β€”
mk_inv πŸ“–mathematicalβ€”SeparationQuotient
instInv
β€”β€”
mk_mul πŸ“–mathematicalβ€”SeparationQuotient
instMul
β€”β€”
mk_natCast πŸ“–mathematicalβ€”SeparationQuotient
instNatCast
β€”β€”
mk_neg πŸ“–mathematicalβ€”SeparationQuotient
instNeg
β€”β€”
mk_nsmul πŸ“–mathematicalβ€”AddMonoid.toNatSMul
SeparationQuotient
instNSmul
β€”β€”
mk_ofNat πŸ“–mathematicalβ€”SeparationQuotient
instOfNatAtLeastTwo
instNatCast
β€”β€”
mk_pow πŸ“–mathematicalβ€”Monoid.toNatPow
SeparationQuotient
instPow
β€”β€”
mk_smul πŸ“–mathematicalβ€”SeparationQuotient
instSMul
β€”β€”
mk_sub πŸ“–mathematicalβ€”SeparationQuotient
instSub
β€”β€”
mk_vadd πŸ“–mathematicalβ€”HVAdd.hVAdd
instHVAdd
SeparationQuotient
instVAdd
β€”β€”
mk_zpow πŸ“–mathematicalβ€”DivInvMonoid.toZPow
Group.toDivInvMonoid
SeparationQuotient
instZPow
β€”β€”
mk_zsmul πŸ“–mathematicalβ€”SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
SeparationQuotient
instZSMul
β€”β€”

---

← Back to Index