| Name | Category | Theorems |
instAdd π | CompOp | 4 mathmath: mk_add, instContinuousAdd, instRightDistribClass, instLeftDistribClass
|
instAddAction π | CompOp | β |
instAddCommGroup π | CompOp | β |
instAddCommMagma π | CompOp | β |
instAddCommMonoid π | CompOp | 14 mathmath: mkCLM_comp_outCLM, outCLM_uniformContinuous, outCLM_isUniformEmbedding, exists_out_continuousLinearMap, mk_outCLM, postcomp_mkCLM_surjective, mk_comp_outCLM, liftCLM_apply, isEmbedding_outCLM, liftCLM_mk, mkCLM_apply, instModuleFinite, outCLM_injective, outCLM_isUniformInducing
|
instAddCommSemigroup π | CompOp | β |
instAddGroup π | CompOp | 2 mathmath: instIsUniformAddGroup, instIsTopologicalAddGroup
|
instAddMonoid π | CompOp | 2 mathmath: liftContinuousAddCommMonoidHom_mk, liftNormedAddGroupHom_apply
|
instAddSemigroup π | CompOp | β |
instAddZeroClass π | CompOp | 2 mathmath: mkAddMonoidHom_apply, normedMk_apply
|
instAlgebra π | CompOp | 1 mathmath: mk_algebraMap
|
instCommGroup π | CompOp | β |
instCommMagma π | CompOp | β |
instCommMonoid π | CompOp | β |
instCommMonoidWithZero π | CompOp | β |
instCommRing π | CompOp | β |
instCommSemigroup π | CompOp | β |
instCommSemiring π | CompOp | β |
instDistrib π | CompOp | β |
instDistribMulAction π | CompOp | β |
instDistribSMul π | CompOp | β |
instDiv π | CompOp | 2 mathmath: mk_div, instContinuousDiv
|
instGroup π | CompOp | 2 mathmath: instIsTopologicalGroup, instIsUniformGroup
|
instHasDistribNeg π | CompOp | β |
instIntCast π | CompOp | 1 mathmath: mk_intCast
|
instInv π | CompOp | 2 mathmath: instContinuousInv, mk_inv
|
instInvOneClass π | CompOp | β |
instInvolutiveInv π | CompOp | β |
instInvolutiveNeg π | CompOp | β |
instModule π | CompOp | 14 mathmath: mkCLM_comp_outCLM, outCLM_uniformContinuous, outCLM_isUniformEmbedding, exists_out_continuousLinearMap, mk_outCLM, postcomp_mkCLM_surjective, mk_comp_outCLM, liftCLM_apply, isEmbedding_outCLM, liftCLM_mk, mkCLM_apply, instModuleFinite, outCLM_injective, outCLM_isUniformInducing
|
instMonoid π | CompOp | 1 mathmath: liftContinuousCommMonoidHom_mk
|
instMonoidWithZero π | CompOp | β |
instMul π | CompOp | 4 mathmath: mk_mul, instContinuousMul, instRightDistribClass, instLeftDistribClass
|
instMulAction π | CompOp | β |
instMulDistribMulAction π | CompOp | β |
instMulOneClass π | CompOp | 1 mathmath: mkMonoidHom_apply
|
instMulZeroClass π | CompOp | β |
instMulZeroOneClass π | CompOp | β |
instNSmul π | CompOp | 1 mathmath: mk_nsmul
|
instNatCast π | CompOp | 2 mathmath: mk_natCast, mk_ofNat
|
instNeg π | CompOp | 2 mathmath: instContinuousNeg, mk_neg
|
instNegZeroClass π | CompOp | β |
instNonAssocRing π | CompOp | β |
instNonAssocSemiring π | CompOp | 1 mathmath: mkRingHom_apply
|
instNonUnitalCommRing π | CompOp | β |
instNonUnitalCommSemiring π | CompOp | β |
instNonUnitalNonAssocCommRing π | CompOp | β |
instNonUnitalNonAssocCommSemiring π | CompOp | β |
instNonUnitalNonAssocRing π | CompOp | β |
instNonUnitalRing π | CompOp | β |
instNonUnitalSemiring π | CompOp | β |
instNonUnitalnonAssocSemiring π | CompOp | β |
instPow π | CompOp | 1 mathmath: mk_pow
|
instRing π | CompOp | β |
instSMul π | CompOp | 8 mathmath: mk_smul, instIsScalarTower, instIsBoundedSMulSeparationQuotient, instIsCentralScalar, instIsPretransitiveSMul, instContinuousConstSMul, instSMulCommClass, instContinuousSMul
|
instSMulZeroClass π | CompOp | β |
instSemigroup π | CompOp | β |
instSemigroupWithZero π | CompOp | β |
instSemiring π | CompOp | 1 mathmath: mk_algebraMap
|
instSub π | CompOp | 2 mathmath: mk_sub, instContinuousSub
|
instVAdd π | CompOp | 6 mathmath: instIsPretransitiveVAdd, instIsCentralVAdd, mk_vadd, instVAddCommClass, instVAddAssocClass, instContinuousConstVAdd
|
instZPow π | CompOp | 1 mathmath: mk_zpow
|
instZSMul π | CompOp | 1 mathmath: mk_zsmul
|
liftCLM π | CompOp | 2 mathmath: liftCLM_apply, liftCLM_mk
|
mkAddMonoidHom π | CompOp | 2 mathmath: mkAddMonoidHom_apply, normedMk_apply
|
mkCLM π | CompOp | 4 mathmath: mkCLM_comp_outCLM, exists_out_continuousLinearMap, postcomp_mkCLM_surjective, mkCLM_apply
|
mkMonoidHom π | CompOp | 1 mathmath: mkMonoidHom_apply
|
mkRingHom π | CompOp | 1 mathmath: mkRingHom_apply
|