Algebraic operations on SeparationQuotient #
In this file we define algebraic operations (multiplication, addition etc) on the separation quotient of a topological space with corresponding operation, provided that the original operation is continuous.
We also prove continuity of these operations
and show that they satisfy the same kind of laws (Monoid etc) as the original ones.
Finally, we construct a section of the quotient map
which is a continuous linear map SeparationQuotient E โL[K] E.
instance
SeparationQuotient.instSMul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
:
SMul M (SeparationQuotient X)
Equations
instance
SeparationQuotient.instVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
:
VAdd M (SeparationQuotient X)
Equations
@[simp]
theorem
SeparationQuotient.mk_smul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
(c : M)
(x : X)
:
@[simp]
theorem
SeparationQuotient.mk_vadd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
(c : M)
(x : X)
:
instance
SeparationQuotient.instContinuousConstSMul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
:
instance
SeparationQuotient.instContinuousConstVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
:
instance
SeparationQuotient.instIsPretransitiveSMul
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
[MulAction.IsPretransitive M X]
:
instance
SeparationQuotient.instIsPretransitiveVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
[AddAction.IsPretransitive M X]
:
instance
SeparationQuotient.instIsCentralScalar
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
[SMul Mแตแตแต X]
[IsCentralScalar M X]
:
instance
SeparationQuotient.instIsCentralVAdd
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
[VAdd Mแตแตแต X]
[IsCentralVAdd M X]
:
instance
SeparationQuotient.instSMulCommClass
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
{N : Type u_3}
[SMul N X]
[ContinuousConstSMul N X]
[SMulCommClass M N X]
:
SMulCommClass M N (SeparationQuotient X)
instance
SeparationQuotient.instVAddCommClass
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
{N : Type u_3}
[VAdd N X]
[ContinuousConstVAdd N X]
[VAddCommClass M N X]
:
VAddCommClass M N (SeparationQuotient X)
instance
SeparationQuotient.instIsScalarTower
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[SMul M X]
[ContinuousConstSMul M X]
{N : Type u_3}
[SMul N X]
[SMul M N]
[ContinuousConstSMul N X]
[IsScalarTower M N X]
:
IsScalarTower M N (SeparationQuotient X)
instance
SeparationQuotient.instVAddAssocClass
{M : Type u_1}
{X : Type u_2}
[TopologicalSpace X]
[VAdd M X]
[ContinuousConstVAdd M X]
{N : Type u_3}
[VAdd N X]
[VAdd M N]
[ContinuousConstVAdd N X]
[VAddAssocClass M N X]
:
VAddAssocClass M N (SeparationQuotient X)
instance
SeparationQuotient.instContinuousSMul
{M : Type u_1}
{X : Type u_2}
[SMul M X]
[TopologicalSpace M]
[TopologicalSpace X]
[ContinuousSMul M X]
:
instance
SeparationQuotient.instSMulZeroClass
{M : Type u_1}
{X : Type u_2}
[Zero X]
[SMulZeroClass M X]
[TopologicalSpace X]
[ContinuousConstSMul M X]
:
Equations
instance
SeparationQuotient.instMulAction
{M : Type u_1}
{X : Type u_2}
[Monoid M]
[MulAction M X]
[TopologicalSpace X]
[ContinuousConstSMul M X]
:
MulAction M (SeparationQuotient X)
Equations
instance
SeparationQuotient.instAddAction
{M : Type u_1}
{X : Type u_2}
[AddMonoid M]
[AddAction M X]
[TopologicalSpace X]
[ContinuousConstVAdd M X]
:
AddAction M (SeparationQuotient X)
Equations
Equations
Equations
@[simp]
theorem
SeparationQuotient.mk_mul
{M : Type u_1}
[TopologicalSpace M]
[Mul M]
[ContinuousMul M]
(a b : M)
:
@[simp]
theorem
SeparationQuotient.mk_add
{M : Type u_1}
[TopologicalSpace M]
[Add M]
[ContinuousAdd M]
(a b : M)
:
instance
SeparationQuotient.instContinuousMul
{M : Type u_1}
[TopologicalSpace M]
[Mul M]
[ContinuousMul M]
:
instance
SeparationQuotient.instContinuousAdd
{M : Type u_1}
[TopologicalSpace M]
[Add M]
[ContinuousAdd M]
:
instance
SeparationQuotient.instCommMagma
{M : Type u_1}
[TopologicalSpace M]
[CommMagma M]
[ContinuousMul M]
:
Equations
instance
SeparationQuotient.instAddCommMagma
{M : Type u_1}
[TopologicalSpace M]
[AddCommMagma M]
[ContinuousAdd M]
:
Equations
instance
SeparationQuotient.instSemigroup
{M : Type u_1}
[TopologicalSpace M]
[Semigroup M]
[ContinuousMul M]
:
Equations
instance
SeparationQuotient.instAddSemigroup
{M : Type u_1}
[TopologicalSpace M]
[AddSemigroup M]
[ContinuousAdd M]
:
Equations
instance
SeparationQuotient.instCommSemigroup
{M : Type u_1}
[TopologicalSpace M]
[CommSemigroup M]
[ContinuousMul M]
:
Equations
instance
SeparationQuotient.instAddCommSemigroup
{M : Type u_1}
[TopologicalSpace M]
[AddCommSemigroup M]
[ContinuousAdd M]
:
Equations
instance
SeparationQuotient.instMulOneClass
{M : Type u_1}
[TopologicalSpace M]
[MulOneClass M]
[ContinuousMul M]
:
Equations
instance
SeparationQuotient.instAddZeroClass
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
:
Equations
def
SeparationQuotient.mkMonoidHom
{M : Type u_1}
[TopologicalSpace M]
[MulOneClass M]
[ContinuousMul M]
:
SeparationQuotient.mk as a MonoidHom.
Equations
Instances For
def
SeparationQuotient.mkAddMonoidHom
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
:
SeparationQuotient.mk as an AddMonoidHom.
Equations
Instances For
@[simp]
theorem
SeparationQuotient.mkAddMonoidHom_apply
{M : Type u_1}
[TopologicalSpace M]
[AddZeroClass M]
[ContinuousAdd M]
(aโ : M)
:
@[simp]
theorem
SeparationQuotient.mkMonoidHom_apply
{M : Type u_1}
[TopologicalSpace M]
[MulOneClass M]
[ContinuousMul M]
(aโ : M)
:
instance
SeparationQuotient.instNSmul
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
[ContinuousAdd M]
:
Equations
instance
SeparationQuotient.instPow
{M : Type u_1}
[TopologicalSpace M]
[Monoid M]
[ContinuousMul M]
:
Pow (SeparationQuotient M) โ
Equations
@[simp]
theorem
SeparationQuotient.mk_pow
{M : Type u_1}
[TopologicalSpace M]
[Monoid M]
[ContinuousMul M]
(x : M)
(n : โ)
:
theorem
SeparationQuotient.mk_nsmul
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
[ContinuousAdd M]
(x : M)
(n : โ)
:
instance
SeparationQuotient.instMonoid
{M : Type u_1}
[TopologicalSpace M]
[Monoid M]
[ContinuousMul M]
:
Equations
instance
SeparationQuotient.instAddMonoid
{M : Type u_1}
[TopologicalSpace M]
[AddMonoid M]
[ContinuousAdd M]
:
Equations
instance
SeparationQuotient.instCommMonoid
{M : Type u_1}
[TopologicalSpace M]
[CommMonoid M]
[ContinuousMul M]
:
Equations
instance
SeparationQuotient.instAddCommMonoid
{M : Type u_1}
[TopologicalSpace M]
[AddCommMonoid M]
[ContinuousAdd M]
:
Equations
Equations
Equations
@[simp]
theorem
SeparationQuotient.mk_inv
{G : Type u_1}
[TopologicalSpace G]
[Inv G]
[ContinuousInv G]
(x : G)
:
@[simp]
theorem
SeparationQuotient.mk_neg
{G : Type u_1}
[TopologicalSpace G]
[Neg G]
[ContinuousNeg G]
(x : G)
:
instance
SeparationQuotient.instContinuousInv
{G : Type u_1}
[TopologicalSpace G]
[Inv G]
[ContinuousInv G]
:
instance
SeparationQuotient.instContinuousNeg
{G : Type u_1}
[TopologicalSpace G]
[Neg G]
[ContinuousNeg G]
:
instance
SeparationQuotient.instInvolutiveInv
{G : Type u_1}
[TopologicalSpace G]
[InvolutiveInv G]
[ContinuousInv G]
:
Equations
instance
SeparationQuotient.instInvolutiveNeg
{G : Type u_1}
[TopologicalSpace G]
[InvolutiveNeg G]
[ContinuousNeg G]
:
Equations
instance
SeparationQuotient.instInvOneClass
{G : Type u_1}
[TopologicalSpace G]
[InvOneClass G]
[ContinuousInv G]
:
Equations
instance
SeparationQuotient.instNegZeroClass
{G : Type u_1}
[TopologicalSpace G]
[NegZeroClass G]
[ContinuousNeg G]
:
Equations
Equations
Equations
@[simp]
theorem
SeparationQuotient.mk_div
{G : Type u_1}
[TopologicalSpace G]
[Div G]
[ContinuousDiv G]
(x y : G)
:
@[simp]
theorem
SeparationQuotient.mk_sub
{G : Type u_1}
[TopologicalSpace G]
[Sub G]
[ContinuousSub G]
(x y : G)
:
instance
SeparationQuotient.instContinuousDiv
{G : Type u_1}
[TopologicalSpace G]
[Div G]
[ContinuousDiv G]
:
instance
SeparationQuotient.instContinuousSub
{G : Type u_1}
[TopologicalSpace G]
[Sub G]
[ContinuousSub G]
:
instance
SeparationQuotient.instZSMul
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[IsTopologicalAddGroup G]
:
Equations
instance
SeparationQuotient.instZPow
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[IsTopologicalGroup G]
:
Pow (SeparationQuotient G) โค
Equations
@[simp]
theorem
SeparationQuotient.mk_zpow
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[IsTopologicalGroup G]
(x : G)
(n : โค)
:
theorem
SeparationQuotient.mk_zsmul
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[IsTopologicalAddGroup G]
(x : G)
(n : โค)
:
instance
SeparationQuotient.instGroup
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[IsTopologicalGroup G]
:
Equations
instance
SeparationQuotient.instAddGroup
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[IsTopologicalAddGroup G]
:
Equations
instance
SeparationQuotient.instCommGroup
{G : Type u_1}
[TopologicalSpace G]
[CommGroup G]
[IsTopologicalGroup G]
:
Equations
instance
SeparationQuotient.instAddCommGroup
{G : Type u_1}
[TopologicalSpace G]
[AddCommGroup G]
[IsTopologicalAddGroup G]
:
Equations
instance
SeparationQuotient.instIsTopologicalGroup
{G : Type u_1}
[TopologicalSpace G]
[Group G]
[IsTopologicalGroup G]
:
instance
SeparationQuotient.instIsTopologicalAddGroup
{G : Type u_1}
[TopologicalSpace G]
[AddGroup G]
[IsTopologicalAddGroup G]
:
instance
SeparationQuotient.instIsUniformGroup
{G : Type u_1}
[Group G]
[UniformSpace G]
[IsUniformGroup G]
:
instance
SeparationQuotient.instIsUniformAddGroup
{G : Type u_1}
[AddGroup G]
[UniformSpace G]
[IsUniformAddGroup G]
:
instance
SeparationQuotient.instMulZeroClass
{Mโ : Type u_1}
[TopologicalSpace Mโ]
[MulZeroClass Mโ]
[ContinuousMul Mโ]
:
MulZeroClass (SeparationQuotient Mโ)
Equations
instance
SeparationQuotient.instSemigroupWithZero
{Mโ : Type u_1}
[TopologicalSpace Mโ]
[SemigroupWithZero Mโ]
[ContinuousMul Mโ]
:
Equations
instance
SeparationQuotient.instMulZeroOneClass
{Mโ : Type u_1}
[TopologicalSpace Mโ]
[MulZeroOneClass Mโ]
[ContinuousMul Mโ]
:
Equations
instance
SeparationQuotient.instMonoidWithZero
{Mโ : Type u_1}
[TopologicalSpace Mโ]
[MonoidWithZero Mโ]
[ContinuousMul Mโ]
:
MonoidWithZero (SeparationQuotient Mโ)
Equations
instance
SeparationQuotient.instCommMonoidWithZero
{Mโ : Type u_1}
[TopologicalSpace Mโ]
[CommMonoidWithZero Mโ]
[ContinuousMul Mโ]
:
Equations
instance
SeparationQuotient.instDistrib
{R : Type u_1}
[TopologicalSpace R]
[Distrib R]
[ContinuousMul R]
[ContinuousAdd R]
:
Equations
instance
SeparationQuotient.instLeftDistribClass
{R : Type u_1}
[TopologicalSpace R]
[Mul R]
[Add R]
[LeftDistribClass R]
[ContinuousMul R]
[ContinuousAdd R]
:
instance
SeparationQuotient.instRightDistribClass
{R : Type u_1}
[TopologicalSpace R]
[Mul R]
[Add R]
[RightDistribClass R]
[ContinuousMul R]
[ContinuousAdd R]
:
instance
SeparationQuotient.instNonUnitalnonAssocSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocSemiring R]
[IsTopologicalSemiring R]
:
Equations
instance
SeparationQuotient.instNonUnitalSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalSemiring R]
[IsTopologicalSemiring R]
:
Equations
Equations
@[simp]
@[simp]
theorem
SeparationQuotient.mk_ofNat
{R : Type u_1}
[TopologicalSpace R]
[NatCast R]
(n : โ)
[n.AtLeastTwo]
:
Equations
@[simp]
instance
SeparationQuotient.instNonAssocSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonAssocSemiring R]
[IsTopologicalSemiring R]
:
Equations
instance
SeparationQuotient.instNonUnitalNonAssocRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocRing R]
[IsTopologicalRing R]
:
Equations
instance
SeparationQuotient.instNonUnitalRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalRing R]
[IsTopologicalRing R]
:
Equations
instance
SeparationQuotient.instNonAssocRing
{R : Type u_1}
[TopologicalSpace R]
[NonAssocRing R]
[IsTopologicalRing R]
:
Equations
instance
SeparationQuotient.instSemiring
{R : Type u_1}
[TopologicalSpace R]
[Semiring R]
[IsTopologicalSemiring R]
:
Equations
instance
SeparationQuotient.instRing
{R : Type u_1}
[TopologicalSpace R]
[Ring R]
[IsTopologicalRing R]
:
Equations
instance
SeparationQuotient.instNonUnitalNonAssocCommSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocCommSemiring R]
[IsTopologicalSemiring R]
:
Equations
instance
SeparationQuotient.instNonUnitalCommSemiring
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalCommSemiring R]
[IsTopologicalSemiring R]
:
Equations
instance
SeparationQuotient.instCommSemiring
{R : Type u_1}
[TopologicalSpace R]
[CommSemiring R]
[IsTopologicalSemiring R]
:
Equations
instance
SeparationQuotient.instHasDistribNeg
{R : Type u_1}
[TopologicalSpace R]
[Mul R]
[HasDistribNeg R]
[ContinuousMul R]
[ContinuousNeg R]
:
Equations
instance
SeparationQuotient.instNonUnitalNonAssocCommRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalNonAssocCommRing R]
[IsTopologicalRing R]
:
Equations
instance
SeparationQuotient.instNonUnitalCommRing
{R : Type u_1}
[TopologicalSpace R]
[NonUnitalCommRing R]
[IsTopologicalRing R]
:
Equations
instance
SeparationQuotient.instCommRing
{R : Type u_1}
[TopologicalSpace R]
[CommRing R]
[IsTopologicalRing R]
:
Equations
def
SeparationQuotient.mkRingHom
{R : Type u_1}
[TopologicalSpace R]
[NonAssocSemiring R]
[IsTopologicalSemiring R]
:
SeparationQuotient.mk as a RingHom.
Equations
Instances For
@[simp]
theorem
SeparationQuotient.mkRingHom_apply
{R : Type u_1}
[TopologicalSpace R]
[NonAssocSemiring R]
[IsTopologicalSemiring R]
(aโ : R)
:
instance
SeparationQuotient.instDistribSMul
{M : Type u_1}
{A : Type u_2}
[TopologicalSpace A]
[AddZeroClass A]
[DistribSMul M A]
[ContinuousAdd A]
[ContinuousConstSMul M A]
:
Equations
instance
SeparationQuotient.instDistribMulAction
{M : Type u_1}
{A : Type u_2}
[TopologicalSpace A]
[Monoid M]
[AddMonoid A]
[DistribMulAction M A]
[ContinuousAdd A]
[ContinuousConstSMul M A]
:
Equations
instance
SeparationQuotient.instMulDistribMulAction
{M : Type u_1}
{A : Type u_2}
[TopologicalSpace A]
[Monoid M]
[Monoid A]
[MulDistribMulAction M A]
[ContinuousMul A]
[ContinuousConstSMul M A]
:
Equations
instance
SeparationQuotient.instModule
{R : Type u_1}
{M : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
:
Module R (SeparationQuotient M)
Equations
def
SeparationQuotient.mkCLM
(R : Type u_1)
(M : Type u_3)
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
:
SeparationQuotient.mk as a continuous linear map.
Equations
Instances For
@[simp]
theorem
SeparationQuotient.mkCLM_apply
(R : Type u_1)
(M : Type u_3)
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
(aโ : M)
:
noncomputable def
SeparationQuotient.liftCLM
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
[Semiring S]
[AddCommMonoid N]
[Module S N]
[TopologicalSpace N]
{ฯ : R โ+* S}
(f : M โSL[ฯ] N)
(hf : โ (x y : M), Inseparable x y โ f x = f y)
:
The lift (as a continuous linear map) of f with f x = f y for Inseparable x y.
Equations
Instances For
@[simp]
theorem
SeparationQuotient.liftCLM_apply
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
[Semiring S]
[AddCommMonoid N]
[Module S N]
[TopologicalSpace N]
{ฯ : R โ+* S}
(f : M โSL[ฯ] N)
(hf : โ (x y : M), Inseparable x y โ f x = f y)
(aโ : SeparationQuotient M)
:
@[simp]
theorem
SeparationQuotient.liftCLM_mk
{R : Type u_1}
{S : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[TopologicalSpace M]
[ContinuousAdd M]
[ContinuousConstSMul R M]
[Semiring S]
[AddCommMonoid N]
[Module S N]
[TopologicalSpace N]
{ฯ : R โ+* S}
(f : M โSL[ฯ] N)
(hf : โ (x y : M), Inseparable x y โ f x = f y)
(x : M)
:
instance
SeparationQuotient.instAlgebra
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
:
Algebra R (SeparationQuotient A)
Equations
@[simp]
theorem
SeparationQuotient.mk_algebraMap
{R : Type u_1}
{A : Type u_2}
[CommSemiring R]
[Semiring A]
[Algebra R A]
[TopologicalSpace A]
[IsTopologicalSemiring A]
[ContinuousConstSMul R A]
(r : R)
: