Documentation Verification Report

Subcomplex

๐Ÿ“ Source: Mathlib/Topology/CWComplex/Classical/Subcomplex.lean

Statistics

MetricCount
DefinitionsSubcomplex, instCWComplex, Subcomplex, instRelCWComplex
4
Theoremscell_def, map_def, union_closedCell, cellFrontier_eq, cellFrontier_subset_of_mem, cell_def, closedCell_eq, closedCell_subset_of_mem, disjoint_openCell_subcomplex_of_not_mem, finiteDimensional_subcomplex_of_finiteDimensional, finiteType_subcomplex_of_finiteType, finite_subcomplex_of_finite, map_def, openCell_eq, openCell_subset_of_mem, union_closedCell
16
Total20

SSet

Definitions

NameCategoryTheorems
Subcomplex ๐Ÿ“–CompOp
76 mathmath: RelativeMorphism.image_le, Subcomplex.preimage_eq_top_iff, hornโ‚ƒโ‚.desc.multicofork_ฯ€_two, ofSimplex_le_skeleton, Subcomplex.toSSetFunctor_map, iSup_subcomplexOfSimplex_prod_eq_top, finite_iSup_iff, Subcomplex.range_eq_top, hornโ‚ƒโ‚‚.desc.multicofork_ฯ€_one, Subcomplex.topIso_inv_app_coe, iSup_skeleton, Subcomplex.preimage_min, Subcomplex.eq_top_iff_of_hasDimensionLT, Subcomplex.topIso_inv_ฮน, hornโ‚ƒโ‚.desc.multicofork_pt, skeleton_le_skeletonOfMono, Subcomplex.toSSetFunctor_obj, hasDimensionLT_subcomplex_top_iff, Subcomplex.instSubsingletonHomToSSetBot, Subcomplex.eq_top_iff_contains_nonDegenerate, Subcomplex.preimage_range, Subcomplex.image_le_iff, hornโ‚ƒโ‚.desc.multicofork_ฯ€_two_assoc, hornโ‚ƒโ‚.desc.multicofork_ฯ€_zero_assoc, Subcomplex.image_monotone, skeleton_obj_eq_top, RelativeMorphism.le_preimage, instHasDimensionLTToSSetBotSubcomplex, mem_skeleton_obj_iff_of_nonDegenerate, skeleton_succ, Subcomplex.iSup_ofSimplex_nonDegenerate_eq_top, Subcomplex.image_top, orderEmbeddingN_apply, face_le_horn, Subcomplex.image_preimage_le, Subcomplex.ofSimplex_le_iff, Subcomplex.le_iff_of_hasDimensionLT, Subcomplex.topIso_inv_ฮน_assoc, horn_eq_iSup, range_eq_iSup_sigma_ฮน, Subcomplex.BicartSq.isPushout, skeletonOfMono_zero, hornโ‚ƒโ‚‚.desc.multicofork_ฯ€_zero_assoc, hasDimensionLT_iSup_iff, Subcomplex.le_iff_contains_nonDegenerate, mem_skeleton, iSup_skeletonOfMono, skeletonOfMono_obj_eq_top, iSup_range_eq_top_of_isColimit, hornโ‚ƒโ‚.desc.multicofork_ฯ€_three_assoc, hornโ‚ƒโ‚.desc.multicofork_ฯ€_zero, finite_subcomplex_top_iff, Subcomplex.preimage_max, Subcomplex.image_le_range, mem_skeletonOfMono_obj_iff_of_nonDegenerate, hornโ‚ƒโ‚‚.desc.multicofork_ฯ€_three, N.le_iff, boundary_eq_iSup, stdSimplex.face_inter_face, hornโ‚ƒโ‚‚.desc.multicofork_pt, Subcomplex.range_eq_top_iff, Subcomplex.preimage_iSup, stdSimplex.face_le_face_iff, N.iSup_subcomplex_eq_top, Subcomplex.topIso_hom, hornโ‚ƒโ‚‚.desc.multicofork_ฯ€_zero, hornโ‚ƒโ‚‚.desc.multicofork_ฯ€_three_assoc, hornโ‚ƒโ‚‚.desc.multicofork_ฯ€_one_assoc, hornโ‚ƒโ‚.desc.multicofork_ฯ€_three, Subcomplex.image_iSup, range_eq_iSup_of_isColimit, Subcomplex.preimage_iInf, S.le_def, skeletonOfMono_succ, S.existsUnique_n, skeleton_zero

Topology.CWComplex.Subcomplex

Definitions

NameCategoryTheorems
instCWComplex ๐Ÿ“–CompOp
2 mathmath: cell_def, map_def

Theorems

NameKindAssumesProvesValidatesDepends On
cell_def ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.cell
SetLike.coe
Topology.RelCWComplex.Subcomplex
Set
Set.instEmptyCollection
Topology.CWComplex.instRelCWComplex
Topology.RelCWComplex.Subcomplex.instSetLike
instCWComplex
Set.Elem
Topology.RelCWComplex.Subcomplex.I
โ€”โ€”
map_def ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.map
SetLike.coe
Topology.RelCWComplex.Subcomplex
Set
Set.instEmptyCollection
Topology.CWComplex.instRelCWComplex
Topology.RelCWComplex.Subcomplex.instSetLike
instCWComplex
Topology.RelCWComplex.cell
Set.instMembership
Topology.RelCWComplex.Subcomplex.I
โ€”โ€”
union_closedCell ๐Ÿ“–mathematicalโ€”Set.iUnion
Set.Elem
Topology.RelCWComplex.cell
Set
Set.instEmptyCollection
Topology.CWComplex.instRelCWComplex
Topology.RelCWComplex.Subcomplex.I
Topology.RelCWComplex.closedCell
Set.instMembership
SetLike.coe
Topology.RelCWComplex.Subcomplex
Topology.RelCWComplex.Subcomplex.instSetLike
โ€”Set.empty_union
Topology.RelCWComplex.Subcomplex.union_closedCell

Topology.RelCWComplex

Definitions

NameCategoryTheorems
Subcomplex ๐Ÿ“–CompData
62 mathmath: skeletonLT_union_iUnion_closedCell_eq_skeletonLT_succ, skeleton_top, Topology.CWComplex.exists_mem_openCell_of_mem_skeleton, Subcomplex.cellFrontier_subset_of_mem, Subcomplex.closedCell_subset_of_mem, Subcomplex.union, coe_skeletonLT, Topology.CWComplex.Subcomplex.coe_mk', mem_skeleton_iff, cellFrontier_subset_skeletonLT, Topology.CWComplex.iUnion_openCell_eq_skeletonLT, Topology.CWComplex.Subcomplex.cell_def, mem_skeletonLT_iff, iUnion_openCell_eq_skeleton, Subcomplex.union_closedCell, Topology.CWComplex.mem_skeletonLT_iff, skeletonLT_mono, Subcomplex.ext_iff, Subcomplex.cellFrontier_eq, Subcomplex.openCell_subset_of_mem, cellFrontier_subset_skeleton, Topology.CWComplex.Subcomplex.union, openCell_subset_skeletonLT, closedCell_subset_skeletonLT, Subcomplex.finiteDimensional_subcomplex_of_finiteDimensional, skeletonLT_inter_closedCell_eq_skeletonLT_inter_cellFrontier, Topology.CWComplex.Subcomplex.coe_mk'', skeleton_union_iUnion_closedCell_eq_skeleton_succ, Subcomplex.map_def, iUnion_skeletonLT_eq_complex, skeletonLT_zero_eq_base, iUnion_cellFrontier_subset_skeleton, Subcomplex.subset_complex, iUnion_cellFrontier_subset_skeletonLT, skeleton_inter_closedCell_eq_skeleton_inter_cellFrontier, iUnion_openCell_eq_skeletonLT, Subcomplex.eq_iff, openCell_subset_skeleton, Subcomplex.base_subset, Topology.CWComplex.iUnion_openCell_eq_skeleton, Subcomplex.closed, skeleton_monotone, disjoint_skeleton_openCell, Subcomplex.closedCell_eq, Subcomplex.coe_mk'', Subcomplex.disjoint_openCell_subcomplex_of_not_mem, Subcomplex.coe_mk', iUnion_skeleton_eq_complex, Topology.CWComplex.Subcomplex.map_def, disjoint_skeletonLT_openCell, Subcomplex.finiteType_subcomplex_of_finiteType, Topology.CWComplex.skeletonLT_zero_eq_empty, skeletonLT_top, skeletonLT_monotone, Subcomplex.mem_carrier, Topology.CWComplex.Subcomplex.union_closedCell, Subcomplex.finite_subcomplex_of_finite, Subcomplex.openCell_eq, skeleton_mono, Subcomplex.cell_def, closedCell_subset_skeleton, Subcomplex.coe_eq_carrier

Topology.RelCWComplex.Subcomplex

Definitions

NameCategoryTheorems
instRelCWComplex ๐Ÿ“–CompOp
8 mathmath: cellFrontier_eq, finiteDimensional_subcomplex_of_finiteDimensional, map_def, closedCell_eq, finiteType_subcomplex_of_finiteType, finite_subcomplex_of_finite, openCell_eq, cell_def

Theorems

NameKindAssumesProvesValidatesDepends On
cellFrontier_eq ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.cellFrontier
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
Topology.RelCWComplex.cell
Set
Set.instMembership
I
โ€”โ€”
cellFrontier_subset_of_mem ๐Ÿ“–mathematicalTopology.RelCWComplex.cell
Set
Set.instMembership
I
Set.instHasSubset
Topology.RelCWComplex.cellFrontier
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
โ€”HasSubset.Subset.trans
Set.instIsTransSubset
Topology.RelCWComplex.cellFrontier_subset_closedCell
closedCell_subset_of_mem
cell_def ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.cell
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
Set.Elem
I
โ€”โ€”
closedCell_eq ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.closedCell
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
Topology.RelCWComplex.cell
Set
Set.instMembership
I
โ€”โ€”
closedCell_subset_of_mem ๐Ÿ“–mathematicalTopology.RelCWComplex.cell
Set
Set.instMembership
I
Set.instHasSubset
Topology.RelCWComplex.closedCell
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
โ€”Topology.RelCWComplex.closure_openCell_eq_closedCell
IsClosed.closure_subset_iff
closed
union
Set.subset_union_of_subset_right
Set.subset_iUnion_of_subset
Set.subset_iUnion
disjoint_openCell_subcomplex_of_not_mem ๐Ÿ“–mathematicalTopology.RelCWComplex.cell
Set
Set.instMembership
I
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Topology.RelCWComplex.openCell
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
โ€”Topology.RelCWComplex.disjointBase
Topology.RelCWComplex.disjoint_openCell_of_ne
finiteDimensional_subcomplex_of_finiteDimensional ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.FiniteDimensional
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
โ€”Filter.mp_mem
Topology.RelCWComplex.FiniteDimensional.eventually_isEmpty_cell
Filter.univ_mem'
finiteType_subcomplex_of_finiteType ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.FiniteType
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
โ€”Topology.RelCWComplex.FiniteType.finite_cell
Subtype.finite
finite_subcomplex_of_finite ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.Finite
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
โ€”Topology.RelCWComplex.finite_of_finiteDimensional_finiteType
finiteDimensional_subcomplex_of_finiteDimensional
Topology.RelCWComplex.Finite.toFiniteDimensional
finiteType_subcomplex_of_finiteType
Topology.RelCWComplex.Finite.toFiniteType
map_def ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.map
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
Topology.RelCWComplex.cell
Set
Set.instMembership
I
โ€”โ€”
openCell_eq ๐Ÿ“–mathematicalโ€”Topology.RelCWComplex.openCell
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
instRelCWComplex
Topology.RelCWComplex.cell
Set
Set.instMembership
I
โ€”โ€”
openCell_subset_of_mem ๐Ÿ“–mathematicalTopology.RelCWComplex.cell
Set
Set.instMembership
I
Set.instHasSubset
Topology.RelCWComplex.openCell
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
โ€”HasSubset.Subset.trans
Set.instIsTransSubset
Topology.RelCWComplex.openCell_subset_closedCell
closedCell_subset_of_mem
union_closedCell ๐Ÿ“–mathematicalโ€”Set
Set.instUnion
Set.iUnion
Set.Elem
Topology.RelCWComplex.cell
I
Topology.RelCWComplex.closedCell
Set.instMembership
SetLike.coe
Topology.RelCWComplex.Subcomplex
instSetLike
โ€”subset_antisymm
Set.instAntisymmSubset
Set.union_subset
base_subset
Set.iUnionโ‚‚_subset
closedCell_subset_of_mem
union
Set.union_subset_union_right
Set.iUnionโ‚‚_mono
Topology.RelCWComplex.openCell_subset_closedCell

---

โ† Back to Index