📁 Source: Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
pullbackCone
pullbackConeIsLimit
pullbackFst
pullbackHomeoPreimage
pullbackIsoProdSubtype
pullbackSnd
coequalizer_isOpen_iff
fst_isEmbedding_of_right
fst_isOpenEmbedding_of_right
fst_iso_of_right_embedding_range_subset
isEmbedding_of_pullback
isEmbedding_pullback_to_prod
isInducing_pullback_to_prod
isOpenEmbedding_of_pullback
isOpen_iff_of_isColimit_cofork
isQuotientMap_of_isColimit_cofork
pullbackFst_apply
pullbackIsoProdSubtype_hom_apply
pullbackIsoProdSubtype_hom_fst
pullbackIsoProdSubtype_hom_snd
pullbackIsoProdSubtype_inv_fst
pullbackIsoProdSubtype_inv_fst_apply
pullbackIsoProdSubtype_inv_fst_assoc
pullbackIsoProdSubtype_inv_snd
pullbackIsoProdSubtype_inv_snd_apply
pullbackIsoProdSubtype_inv_snd_assoc
pullbackSnd_apply
pullback_fst_image_snd_preimage
pullback_fst_range
pullback_map_isEmbedding
pullback_map_isOpenEmbedding
pullback_snd_image_fst_preimage
pullback_snd_range
pullback_topology
range_pullback_map
range_pullback_to_prod
snd_isEmbedding_of_left
snd_isOpenEmbedding_of_left
snd_iso_of_left_embedding_range_subset
IsOpen
carrier
CategoryTheory.Limits.coequalizer
TopCat
instCategory
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
topCat_hasColimitsOfShape
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.parallelPair
str
Set.preimage
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
ContinuousMap
ContinuousMap.instFunLike
instConcreteCategoryContinuousMapCarrier
CategoryTheory.Limits.coequalizer.π
CategoryTheory.Limits.coequalizer.condition
Topology.IsEmbedding
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Limits.hasFiniteLimits_of_hasLimits
topCat_hasLimits
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.fst
CategoryTheory.Limits.pullback_fst_iso_of_right_iso
CategoryTheory.IsIso.id
CategoryTheory.Category.comp_id
CategoryTheory.Limits.limit.lift_π
Topology.IsEmbedding.comp
Homeomorph.isEmbedding
Topology.IsOpenEmbedding
Topology.IsOpenEmbedding.comp
Homeomorph.isOpenEmbedding
CategoryTheory.instMonoId
Set
Set.instHasSubset
Set.range
CategoryTheory.IsIso
Set.mem_range_self
continuous_subtype_val
continuous_id'
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.limit
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingCospan.one
CategoryTheory.Limits.limit.π
coe_comp
CategoryTheory.Limits.limit.w
CategoryTheory.Limits.prod
CategoryTheory.Discrete
CategoryTheory.discreteCategory
topCat_hasLimitsOfShape
CategoryTheory.instSmallDiscrete
CategoryTheory.Limits.pair
CategoryTheory.Limits.prod.lift
CategoryTheory.Limits.pullback.snd
mono_iff_injective
CategoryTheory.Limits.mono_pullback_to_prod
Topology.IsInducing
prod_topology
induced_inf
induced_compose
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cofork.π
isOpen_iff_of_isColimit
CategoryTheory.Limits.Cocone.w
Continuous.isOpen_preimage
ContinuousMap.continuous
Topology.IsQuotientMap
Topology.isQuotientMap_iff
CategoryTheory.Limits.epi_of_isColimit_cofork
of
instTopologicalSpaceSubtype
instTopologicalSpaceProd
CategoryTheory.Iso.hom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Iso.eq_inv_comp
CategoryTheory.Iso.inv
CategoryTheory.Limits.limit.conePointUniqueUpToIso_inv_comp
CategoryTheory.ConcreteCategory.congr_hom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
Set.image
Set.ext
CategoryTheory.congr_fun
CategoryTheory.Limits.pullback.condition
setOf
CategoryTheory.Limits.pullback.map
Topology.IsEmbedding.of_comp
ContinuousMap.continuous_toFun
isEmbedding_prodMap
CategoryTheory.Limits.prod.comp_lift
CategoryTheory.Limits.prod.lift_map
Topology.IsOpenEmbedding.isEmbedding
IsOpen.inter
Topology.IsOpenEmbedding.isOpen_range
TopologicalSpace
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
TopologicalSpace.induced
Topology.IsInducing.eq_induced
Homeomorph.isInducing
Set.instInter
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Limits.Concrete.limit_ext
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Functor.instPreservesLimitsOfShapeOfIsRightAdjoint
instIsRightAdjointForgetContinuousMapCarrier
CategoryTheory.Limits.limit.lift_π_assoc
UnivLE.zero
CategoryTheory.Limits.prod.fst
CategoryTheory.Limits.prod.snd
CategoryTheory.Limits.pullback_snd_iso_of_left_iso
CategoryTheory.Category.id_comp
---
← Back to Index