Documentation

Mathlib.Topology.Category.TopCat.Limits.Pullbacks

Pullbacks and pushouts in the category of topological spaces #

@[reducible, inline]
abbrev TopCat.pullbackFst {X Y Z : TopCat} (f : X โŸถ Z) (g : Y โŸถ Z) :

The first projection from the pullback.

Equations
    Instances For
      @[reducible, inline]
      abbrev TopCat.pullbackSnd {X Y Z : TopCat} (f : X โŸถ Z) (g : Y โŸถ Z) :

      The second projection from the pullback.

      Equations
        Instances For

          The explicit pullback cone of X, Y given by { p : X ร— Y // f p.1 = g p.2 }.

          Equations
            Instances For

              The constructed cone is a limit.

              Equations
                Instances For

                  The pullback of two maps can be identified as a subspace of X ร— Y.

                  Equations
                    Instances For
                      noncomputable def TopCat.pullbackHomeoPreimage {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] [TopologicalSpace Z] (f : X โ†’ Z) (hf : Continuous f) (g : Y โ†’ Z) (hg : Topology.IsEmbedding g) :
                      { p : X ร— Y // f p.1 = g p.2 } โ‰ƒโ‚œ โ†‘(f โปยน' Set.range g)

                      The pullback along an embedding is (isomorphic to) the preimage.

                      Equations
                        Instances For
                          theorem TopCat.range_pullback_map {W X Y Z S T : TopCat} (fโ‚ : W โŸถ S) (fโ‚‚ : X โŸถ S) (gโ‚ : Y โŸถ T) (gโ‚‚ : Z โŸถ T) (iโ‚ : W โŸถ Y) (iโ‚‚ : X โŸถ Z) (iโ‚ƒ : S โŸถ T) [Hโ‚ƒ : CategoryTheory.Mono iโ‚ƒ] (eqโ‚ : CategoryTheory.CategoryStruct.comp fโ‚ iโ‚ƒ = CategoryTheory.CategoryStruct.comp iโ‚ gโ‚) (eqโ‚‚ : CategoryTheory.CategoryStruct.comp fโ‚‚ iโ‚ƒ = CategoryTheory.CategoryStruct.comp iโ‚‚ gโ‚‚) :

                          If the map S โŸถ T is mono, then there is a description of the image of W ร—โ‚› X โŸถ Y ร—โ‚œ Z.

                          theorem TopCat.pullback_map_isEmbedding {W X Y Z S T : TopCat} (fโ‚ : W โŸถ S) (fโ‚‚ : X โŸถ S) (gโ‚ : Y โŸถ T) (gโ‚‚ : Z โŸถ T) {iโ‚ : W โŸถ Y} {iโ‚‚ : X โŸถ Z} (Hโ‚ : Topology.IsEmbedding โ‡‘(CategoryTheory.ConcreteCategory.hom iโ‚)) (Hโ‚‚ : Topology.IsEmbedding โ‡‘(CategoryTheory.ConcreteCategory.hom iโ‚‚)) (iโ‚ƒ : S โŸถ T) (eqโ‚ : CategoryTheory.CategoryStruct.comp fโ‚ iโ‚ƒ = CategoryTheory.CategoryStruct.comp iโ‚ gโ‚) (eqโ‚‚ : CategoryTheory.CategoryStruct.comp fโ‚‚ iโ‚ƒ = CategoryTheory.CategoryStruct.comp iโ‚‚ gโ‚‚) :
                          Topology.IsEmbedding โ‡‘(CategoryTheory.ConcreteCategory.hom (CategoryTheory.Limits.pullback.map fโ‚ fโ‚‚ gโ‚ gโ‚‚ iโ‚ iโ‚‚ iโ‚ƒ eqโ‚ eqโ‚‚))

                          If there is a diagram where the morphisms W โŸถ Y and X โŸถ Z are embeddings, then the induced morphism W ร—โ‚› X โŸถ Y ร—โ‚œ Z is also an embedding.

                          W โŸถ Y
                           โ†˜   โ†˜
                            S โŸถ T
                           โ†—   โ†—
                          X โŸถ Z
                          
                          theorem TopCat.pullback_map_isOpenEmbedding {W X Y Z S T : TopCat} (fโ‚ : W โŸถ S) (fโ‚‚ : X โŸถ S) (gโ‚ : Y โŸถ T) (gโ‚‚ : Z โŸถ T) {iโ‚ : W โŸถ Y} {iโ‚‚ : X โŸถ Z} (Hโ‚ : Topology.IsOpenEmbedding โ‡‘(CategoryTheory.ConcreteCategory.hom iโ‚)) (Hโ‚‚ : Topology.IsOpenEmbedding โ‡‘(CategoryTheory.ConcreteCategory.hom iโ‚‚)) (iโ‚ƒ : S โŸถ T) [Hโ‚ƒ : CategoryTheory.Mono iโ‚ƒ] (eqโ‚ : CategoryTheory.CategoryStruct.comp fโ‚ iโ‚ƒ = CategoryTheory.CategoryStruct.comp iโ‚ gโ‚) (eqโ‚‚ : CategoryTheory.CategoryStruct.comp fโ‚‚ iโ‚ƒ = CategoryTheory.CategoryStruct.comp iโ‚‚ gโ‚‚) :
                          Topology.IsOpenEmbedding โ‡‘(CategoryTheory.ConcreteCategory.hom (CategoryTheory.Limits.pullback.map fโ‚ fโ‚‚ gโ‚ gโ‚‚ iโ‚ iโ‚‚ iโ‚ƒ eqโ‚ eqโ‚‚))

                          If there is a diagram where the morphisms W โŸถ Y and X โŸถ Z are open embeddings, and S โŸถ T is mono, then the induced morphism W ร—โ‚› X โŸถ Y ร—โ‚œ Z is also an open embedding.

                          W โŸถ Y
                           โ†˜   โ†˜
                            S โŸถ T
                           โ†—   โ†—
                          X โŸถ Z