Documentation Verification Report

Yoneda

📁 Source: Mathlib/Topology/Category/TopCat/Yoneda.lean

Statistics

MetricCount
DefinitionsyonedaPresheaf, yonedaPresheaf'
2
Theoremscomp_yonedaPresheaf', instPreservesFiniteProductsOppositeTopCatYonedaPresheaf', piComparison_fac, yonedaPresheaf'_map, yonedaPresheaf'_obj, yonedaPresheaf_map, yonedaPresheaf_obj
7
Total9

ContinuousMap

Definitions

NameCategoryTheorems
yonedaPresheaf 📖CompOp
5 mathmath: equalizerCondition_yonedaPresheaf, yonedaPresheaf_map, yonedaPresheaf_obj, instPreservesFiniteProductsOppositeYonedaPresheafOfPreservesFiniteCoproductsTopCat, comp_yonedaPresheaf'
yonedaPresheaf' 📖CompOp
5 mathmath: yonedaPresheaf'_obj, piComparison_fac, yonedaPresheaf'_map, comp_yonedaPresheaf', instPreservesFiniteProductsOppositeTopCatYonedaPresheaf'

Theorems

NameKindAssumesProvesValidatesDepends On
comp_yonedaPresheaf' 📖mathematicalyonedaPresheaf
CategoryTheory.Functor.comp
Opposite
CategoryTheory.Category.opposite
TopCat
TopCat.instCategory
CategoryTheory.types
CategoryTheory.Functor.op
yonedaPresheaf'
instPreservesFiniteProductsOppositeTopCatYonedaPresheaf' 📖mathematicalCategoryTheory.Limits.PreservesFiniteProducts
Opposite
TopCat
CategoryTheory.Category.opposite
TopCat.instCategory
CategoryTheory.types
yonedaPresheaf'
CategoryTheory.Limits.PreservesProduct.of_iso_comparison
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
TopCat.topCat_hasColimitsOfShape
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.Types.hasLimit
piComparison_fac
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.isIso_op
CategoryTheory.Limits.preservesLimit_of_iso_diagram
piComparison_fac 📖mathematicalCategoryTheory.Limits.piComparison
Opposite
TopCat
CategoryTheory.Category.opposite
TopCat.instCategory
CategoryTheory.types
yonedaPresheaf'
Opposite.op
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
CategoryTheory.Discrete
CategoryTheory.discreteCategory
TopCat.topCat_hasColimitsOfShape
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Discrete.functor
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Functor.obj
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.piObj
TopCat.of
TopCat.carrier
instTopologicalSpaceSigma
TopCat.str
ContinuousMap
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Limits.sigmaObj
CategoryTheory.Iso.inv
CategoryTheory.Limits.opCoproductIsoProduct
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
TopCat.sigmaIsoSigma
DFunLike.coe
Equiv
CategoryTheory.Iso
EquivLike.toFunLike
Equiv.instEquivLike
equivEquivIso
sigmaEquiv
CategoryTheory.Limits.Types.productIso
CategoryTheory.Limits.instHasProductOppositeOp
CategoryTheory.Limits.hasColimitOfHasColimitsOfShape
TopCat.topCat_hasColimitsOfShape
CategoryTheory.instSmallDiscrete
UnivLE.small
univLE_of_max
UnivLE.self
CategoryTheory.Limits.Types.hasLimit
CategoryTheory.Category.assoc
CategoryTheory.Iso.eq_comp_inv
CategoryTheory.types_ext
ext
CategoryTheory.Limits.Types.productIso_hom_comp_eval_apply
CategoryTheory.Limits.Types.pi_lift_π_apply
yonedaPresheaf'_map 📖mathematicalCategoryTheory.Functor.map
Opposite
TopCat
CategoryTheory.Category.opposite
TopCat.instCategory
CategoryTheory.types
yonedaPresheaf'
comp
TopCat.carrier
Opposite.unop
TopCat.str
CategoryTheory.ConcreteCategory.hom
ContinuousMap
instFunLike
TopCat.instConcreteCategoryContinuousMapCarrier
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
yonedaPresheaf'_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
TopCat
CategoryTheory.Category.opposite
TopCat.instCategory
CategoryTheory.types
yonedaPresheaf'
ContinuousMap
TopCat.carrier
Opposite.unop
TopCat.str
yonedaPresheaf_map 📖mathematicalCategoryTheory.Functor.map
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
yonedaPresheaf
comp
TopCat.carrier
CategoryTheory.Functor.obj
TopCat
TopCat.instCategory
Opposite.unop
TopCat.str
TopCat.Hom.hom
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
yonedaPresheaf_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
CategoryTheory.Category.opposite
CategoryTheory.types
yonedaPresheaf
ContinuousMap
TopCat.carrier
TopCat
TopCat.instCategory
Opposite.unop
TopCat.str

---

← Back to Index