Yoneda presheaves on topologically concrete categories #
This file develops some API for "topologically concrete" categories, defining universe polymorphic "Yoneda presheaves" on such categories.
def
ContinuousMap.yonedaPresheaf
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
:
CategoryTheory.Functor Cแตแต (Type (max w w'))
A universe polymorphic "Yoneda presheaf" on C given by continuous maps into a topological space
Y.
Equations
Instances For
@[simp]
theorem
ContinuousMap.yonedaPresheaf_map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
{Xโ Yโ : Cแตแต}
(f : Xโ โถ Yโ)
(g : C(โ(F.obj (Opposite.unop Xโ)), Y))
:
@[simp]
theorem
ContinuousMap.yonedaPresheaf_obj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
(X : Cแตแต)
:
def
ContinuousMap.yonedaPresheaf'
(Y : Type w')
[TopologicalSpace Y]
:
CategoryTheory.Functor TopCatแตแต (Type (max w w'))
A universe polymorphic Yoneda presheaf on TopCat given by continuous maps into a topological
space Y.
Equations
Instances For
@[simp]
theorem
ContinuousMap.yonedaPresheaf'_map
(Y : Type w')
[TopologicalSpace Y]
{Xโ Yโ : TopCatแตแต}
(f : Xโ โถ Yโ)
(g : C(โ(Opposite.unop Xโ), Y))
:
@[simp]
theorem
ContinuousMap.comp_yonedaPresheaf'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(F : CategoryTheory.Functor C TopCat)
(Y : Type w')
[TopologicalSpace Y]
:
theorem
ContinuousMap.piComparison_fac
(Y : Type w')
[TopologicalSpace Y]
{ฮฑ : Type}
(X : ฮฑ โ TopCat)
:
(CategoryTheory.Limits.piComparison (yonedaPresheaf' Y) fun (x : ฮฑ) => Opposite.op (X x)) = CategoryTheory.CategoryStruct.comp
((yonedaPresheaf' Y).map
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.opCoproductIsoProduct X).inv
(TopCat.sigmaIsoSigma X).inv.op))
(CategoryTheory.CategoryStruct.comp (equivEquivIso (sigmaEquiv Y fun (x : ฮฑ) => โ(X x))).inv
(CategoryTheory.Limits.Types.productIso fun (i : ฮฑ) => C(โ(X i), Y)).inv)
instance
ContinuousMap.instPreservesFiniteProductsOppositeTopCatYonedaPresheaf'
(Y : Type w')
[TopologicalSpace Y]
:
The universe polymorphic Yoneda presheaf on TopCat preserves finite products.