Documentation Verification Report

Product

πŸ“ Source: Mathlib/Topology/Homotopy/Product.lean

Statistics

MetricCount
Definitionsprod, pi, prod, Product, Product, pi, piHomotopy, prod, prodHomotopy, proj, projLeft, projRight
12
Theoremsprod_apply, pi_apply, prod_apply, comp_pi_eq_pi_comp, comp_prod_eq_prod_comp, pi_lift, pi_proj, prod_lift, prod_projLeft_projRight, projLeft_prod, projRight_prod, proj_pi
12
Total24

ContinuousMap.Homotopy

Definitions

NameCategoryTheorems
prod πŸ“–CompOp
1 mathmath: prod_apply

Theorems

NameKindAssumesProvesValidatesDepends On
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.Homotopy
instTopologicalSpaceProd
ContinuousMap.prodMk
Set.Elem
Real
unitInterval
instFunLike
prod
β€”β€”

ContinuousMap.HomotopyRel

Definitions

NameCategoryTheorems
pi πŸ“–CompOp
1 mathmath: pi_apply
prod πŸ“–CompOp
1 mathmath: prod_apply

Theorems

NameKindAssumesProvesValidatesDepends On
pi_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.HomotopyWith
Pi.topologicalSpace
ContinuousMap.pi
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
pi
β€”β€”
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.HomotopyWith
instTopologicalSpaceProd
ContinuousMap.prodMk
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
prod
β€”β€”

DihedralGroup

Definitions

NameCategoryTheorems
Product πŸ“–CompOp
3 mathmath: commProb_nil, commProb_cons, commProb_reciprocal

Filter

Definitions

NameCategoryTheorems
Product πŸ“–CompOp
2 mathmath: FirstOrder.Language.Ultraproduct.Product.instNonempty, FirstOrder.Language.Ultraproduct.sentence_realize

Path.Homotopic

Definitions

NameCategoryTheorems
pi πŸ“–CompOp
5 mathmath: comp_pi_eq_pi_comp, pi_proj, FundamentalGroupoidFunctor.piToPiTop_map, pi_lift, proj_pi
piHomotopy πŸ“–CompOpβ€”
prod πŸ“–CompOp
6 mathmath: prod_projLeft_projRight, projRight_prod, projLeft_prod, prod_lift, comp_prod_eq_prod_comp, FundamentalGroupoidFunctor.prodToProdTop_map
prodHomotopy πŸ“–CompOpβ€”
proj πŸ“–CompOp
3 mathmath: pi_proj, FundamentalGroupoidFunctor.proj_map, proj_pi
projLeft πŸ“–CompOp
3 mathmath: prod_projLeft_projRight, FundamentalGroupoidFunctor.projLeft_map, projLeft_prod
projRight πŸ“–CompOp
3 mathmath: prod_projLeft_projRight, projRight_prod, FundamentalGroupoidFunctor.projRight_map

Theorems

NameKindAssumesProvesValidatesDepends On
comp_pi_eq_pi_comp πŸ“–mathematicalβ€”Quotient.trans
Pi.topologicalSpace
pi
β€”Quotient.induction_on_pi
pi_lift
Quotient.mk_trans
Path.trans_pi_eq_pi_trans
comp_prod_eq_prod_comp πŸ“–mathematicalβ€”Quotient.trans
instTopologicalSpaceProd
prod
β€”Quotient.indβ‚‚
Path.trans_prod_eq_prod_trans
pi_lift πŸ“–mathematicalβ€”pi
Pi.topologicalSpace
Path.pi
β€”Quotient.map.congr_simp
Quotient.choice_eq
pi_proj πŸ“–mathematicalβ€”pi
proj
β€”continuous_apply
ContinuousMap.continuous
pi_lift
prod_lift πŸ“–mathematicalβ€”prod
instTopologicalSpaceProd
Path.prod
β€”β€”
prod_projLeft_projRight πŸ“–mathematicalβ€”prod
projLeft
projRight
β€”Quotient.ind
continuous_fst
ContinuousMap.continuous
continuous_snd
projLeft_prod πŸ“–mathematicalβ€”projLeft
prod
β€”Quotient.indβ‚‚
continuous_fst
projLeft.eq_1
prod_lift
ContinuousMap.continuous
Quotient.mk_map
projRight_prod πŸ“–mathematicalβ€”projRight
prod
β€”Quotient.indβ‚‚
continuous_snd
projRight.eq_1
prod_lift
ContinuousMap.continuous
Quotient.mk_map
proj_pi πŸ“–mathematicalβ€”proj
pi
β€”Quotient.induction_on_pi
continuous_apply
proj.eq_1
pi_lift

---

← Back to Index