Documentation Verification Report

Nat

📁 Source: Mathlib/Topology/Instances/Nat.lean

Statistics

MetricCount
DefinitionsinstDist, instMetricSpace
2
TheoremsclosedBall_eq_Icc, dist_cast_real, dist_coe_int, dist_eq, instIsOrderBornology, instNoncompactSpace, instProperSpace, isClosedEmbedding_coe_real, isUniformEmbedding_coe_real, pairwise_one_le_dist, preimage_ball, preimage_closedBall
12
Total14

Nat

Definitions

NameCategoryTheorems
instDist 📖CompOp
6 mathmath: dist_cast_real, dist_eq, PNat.dist_coe, pairwise_one_le_dist, dist_cast_rat, dist_coe_int
instMetricSpace 📖CompOp
5 mathmath: closedBall_eq_Icc, preimage_closedBall, instIsOrderBornology, preimage_ball, instProperSpace

Theorems

NameKindAssumesProvesValidatesDepends On
closedBall_eq_Icc 📖mathematicalMetric.closedBall
MetricSpace.toPseudoMetricSpace
instMetricSpace
Set.Icc
instPreorder
ceil
Real
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
Real.instSub
Real.instNatCast
floor
Real.instAdd
Real.instIsStrictOrderedRing
le_or_gt
preimage_closedBall
Real.closedBall_eq_Icc
preimage_Icc
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
cast_nonneg'
Real.instZeroLEOneClass
Metric.closedBall_eq_empty
Set.Icc_eq_empty_of_lt
floor_mono
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
cast_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Linarith.add_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
floor_natCast
lt_ceil
lt_of_not_ge
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_nonpos_of_le
dist_cast_real 📖mathematicalDist.dist
Real
PseudoMetricSpace.toDist
Real.pseudoMetricSpace
Real.instNatCast
instDist
dist_coe_int 📖mathematicalDist.dist
Int.instDist
instDist
dist_eq 📖mathematicalDist.dist
instDist
abs
Real
Real.lattice
Real.instAddGroup
Real.instSub
Real.instNatCast
instIsOrderBornology 📖mathematicalIsOrderBornology
PseudoMetricSpace.toBornology
MetricSpace.toPseudoMetricSpace
instMetricSpace
instPreorder
IsOrderBornology.of_isCompactIcc
ConditionallyCompleteLinearOrder.toCompactIccSpace
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyNat
Real.instIsStrictOrderedRing
closedBall_eq_Icc
cast_zero
zero_sub
zero_add
instNoncompactSpace 📖mathematicalNoncompactSpace
instTopologicalSpaceNat
noncompactSpace_of_neBot
Filter.cocompact_eq_cofinite
instDiscreteTopologyNat
instInfiniteNat
instProperSpace 📖mathematicalProperSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Real.instIsStrictOrderedRing
closedBall_eq_Icc
Set.Finite.isCompact
Set.finite_Icc
isClosedEmbedding_coe_real 📖mathematicalTopology.IsClosedEmbedding
Real
instTopologicalSpaceNat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instNatCast
Metric.isClosedEmbedding_of_pairwise_le_dist
instDiscreteTopologyNat
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
pairwise_one_le_dist
isUniformEmbedding_coe_real 📖mathematicalIsUniformEmbedding
Real
instUniformSpaceNat
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instNatCast
Metric.isUniformEmbedding_bot_of_pairwise_le_dist
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
pairwise_one_le_dist
pairwise_one_le_dist 📖mathematicalPairwise
Real
Real.instLE
Real.instOne
Dist.dist
instDist
Int.pairwise_one_le_dist
Int.instCharZero
preimage_ball 📖mathematicalSet.preimage
Real
Real.instNatCast
Metric.ball
Real.pseudoMetricSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
preimage_closedBall 📖mathematicalSet.preimage
Real
Real.instNatCast
Metric.closedBall
Real.pseudoMetricSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace

---

← Back to Index