Documentation

Mathlib.Topology.Instances.Nat

Topology on the natural numbers #

The structure of a metric space on โ„• is introduced in this file, induced from โ„.

noncomputable instance Nat.instDist :
Equations
    theorem Nat.dist_eq (x y : โ„•) :
    Dist.dist x y = |โ†‘x - โ†‘y|
    theorem Nat.dist_coe_int (x y : โ„•) :
    Dist.dist โ†‘x โ†‘y = Dist.dist x y
    @[simp]
    theorem Nat.dist_cast_real (x y : โ„•) :
    Dist.dist โ†‘x โ†‘y = Dist.dist x y