Documentation Verification Report

Rat

๐Ÿ“ Source: Mathlib/Topology/Instances/Rat.lean

Statistics

MetricCount
DefinitionsinstMetricSpace, instMetricSpace
2
Theoremsdist_cast_rat, isClosedEmbedding_coe_rat, isUniformEmbedding_coe_rat, dist_eq, instContinuousInvโ‚€, instContinuousSMulNNReal, instContinuousSMulOfIsScalarTowerOfRat, instContinuousSMulRatReal, instContinuousSub, instIsTopologicalSemiring, instOrderTopology, nndist_eq, dist_cast_rat, isClosedEmbedding_coe_rat, isUniformEmbedding_coe_rat, continuous_coe_real, dist_cast, dist_eq, instIsTopologicalAddGroup, instIsTopologicalRing, instIsUniformAddGroup, instNoncompactSpace, instOrderTopology, isDenseEmbedding_coe_real, isEmbedding_coe_real, isUniformEmbedding_coe_real, totallyBounded_Icc, uniformContinuous_abs, uniformContinuous_add, uniformContinuous_coe_real, uniformContinuous_neg
31
Total33

Int

Theorems

NameKindAssumesProvesValidatesDepends On
dist_cast_rat ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Rat.instMetricSpace
instDist
โ€”dist_cast_real
Rat.dist_cast
isClosedEmbedding_coe_rat ๐Ÿ“–mathematicalโ€”Topology.IsClosedEmbedding
instTopologicalSpaceInt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Rat.instMetricSpace
โ€”Metric.isClosedEmbedding_of_pairwise_le_dist
instDiscreteTopologyInt
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
dist_cast_rat
pairwise_one_le_dist
isUniformEmbedding_coe_rat ๐Ÿ“–mathematicalโ€”IsUniformEmbedding
instUniformSpaceInt
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Rat.instMetricSpace
โ€”Metric.isUniformEmbedding_bot_of_pairwise_le_dist
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
dist_cast_rat
pairwise_one_le_dist

NNRat

Definitions

NameCategoryTheorems
instMetricSpace ๐Ÿ“–CompOp
9 mathmath: dist_eq, instContinuousSub, instContinuousInvโ‚€, tendsto_inv_atTop_nhds_zero_nat, instContinuousSMulOfIsScalarTowerOfRat, nndist_eq, instContinuousSMulNNReal, instOrderTopology, instIsTopologicalSemiring

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq ๐Ÿ“–mathematicalโ€”Dist.dist
NNRat
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpace
Rat.instMetricSpace
cast
Rat.instNNRatCast
โ€”โ€”
instContinuousInvโ‚€ ๐Ÿ“–mathematicalโ€”ContinuousInvโ‚€
NNRat
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
instInv
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
โ€”IsStrictOrderedRing.toContinuousInvโ‚€
instIsStrictOrderedRingNNRat
instOrderTopology
IsTopologicalSemiring.toContinuousMul
instIsTopologicalSemiring
instContinuousSMulNNReal ๐Ÿ“–mathematicalโ€”ContinuousSMul
NNRat
NNReal
NNReal.instSMulNNRat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
NNReal.instTopologicalSpace
โ€”Continuous.smul
instContinuousSMulOfIsScalarTowerOfRat
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsScalarTower.nnrat
Rat.instCharZero
instContinuousSMulRatReal
Continuous.fst
continuous_id'
Continuous.comp'
NNReal.continuous_coe
Continuous.snd
instContinuousSMulOfIsScalarTowerOfRat ๐Ÿ“–mathematicalโ€”ContinuousSMul
NNRat
SemigroupAction.toSMul
Monoid.toSemigroup
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
MulAction.toSemigroupAction
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
โ€”Rat.instCharZero
cast_smul_eq_nnqsmul
Continuous.smul
Continuous.comp'
continuous_induced_dom
Continuous.fst
continuous_id'
Continuous.snd
instContinuousSMulRatReal ๐Ÿ“–mathematicalโ€”ContinuousSMul
Real
Algebra.toSMul
Rat.commSemiring
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Real.instDivisionRing
DivisionRing.toRatAlgebra
IsStrictOrderedRing.toCharZero
Ring.toSemiring
DivisionRing.toRing
Real.partialOrder
Real.instIsStrictOrderedRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Rat.instMetricSpace
Real.pseudoMetricSpace
โ€”IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Continuous.smul
ContinuousMul.to_continuousSMul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fst'
continuous_induced_dom
continuous_snd
instContinuousSub ๐Ÿ“–mathematicalโ€”ContinuousSub
NNRat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
instSubNNRat
โ€”Continuous.max
OrderTopology.to_orderClosedTopology
Rat.instOrderTopology
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
Rat.instIsTopologicalAddGroup
Continuous.comp'
continuous_subtype_val
Continuous.fst
continuous_id'
Continuous.snd
continuous_const
instIsTopologicalSemiring ๐Ÿ“–mathematicalโ€”IsTopologicalSemiring
NNRat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instSemifield
โ€”continuousAdd_induced
Rat.instIsStrictOrderedRing
SemilinearMapClass.toAddHomClass
IsStrictOrderedRing.toCharZero
Nonneg.isStrictOrderedRing
Rat.instCharZero
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
Rat.instIsTopologicalRing
continuousMul_induced
Rat.instZeroLEOneClass
Rat.instAddLeftMono
Rat.instPosMulMono
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
IsTopologicalSemiring.toContinuousMul
instOrderTopology ๐Ÿ“–mathematicalโ€”OrderTopology
NNRat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderNNRat
โ€”orderTopology_of_ordConnected
Rat.instOrderTopology
Set.ordConnected_Ici
nndist_eq ๐Ÿ“–mathematicalโ€”NNDist.nndist
NNRat
PseudoMetricSpace.toNNDist
MetricSpace.toPseudoMetricSpace
instMetricSpace
Rat.instMetricSpace
cast
Rat.instNNRatCast
โ€”โ€”

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
dist_cast_rat ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
Rat.instMetricSpace
instDist
โ€”dist_cast_real
Rat.dist_cast
isClosedEmbedding_coe_rat ๐Ÿ“–mathematicalโ€”Topology.IsClosedEmbedding
instTopologicalSpaceNat
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Rat.instMetricSpace
โ€”Metric.isClosedEmbedding_of_pairwise_le_dist
instDiscreteTopologyNat
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
dist_cast_rat
pairwise_one_le_dist
isUniformEmbedding_coe_rat ๐Ÿ“–mathematicalโ€”IsUniformEmbedding
instUniformSpaceNat
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
Rat.instMetricSpace
โ€”Metric.isUniformEmbedding_bot_of_pairwise_le_dist
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
dist_cast_rat
pairwise_one_le_dist

Rat

Definitions

NameCategoryTheorems
instMetricSpace ๐Ÿ“–CompOp
33 mathmath: continuous_coe_real, Int.isUniformEmbedding_coe_rat, NNRat.dist_eq, Nat.isUniformEmbedding_coe_rat, not_countably_generated_cocompact, uniformContinuous_neg, dist_eq, borelSpace, dist_cast, isDenseEmbedding_coe_real, not_firstCountableTopology_opc, instOrderTopology, cocompact_inf_nhds_neBot, Int.dist_cast_rat, uniformContinuous_add, uniformContinuous_abs, Nat.dist_cast_rat, Nat.isClosedEmbedding_coe_rat, totallyBounded_Icc, not_countably_generated_nhds_infty_opc, not_secondCountableTopology_opc, uniformSpace_eq, NNRat.nndist_eq, instIsTopologicalRing, instIsUniformAddGroup, instNoncompactSpace, isUniformEmbedding_coe_real, isEmbedding_coe_real, instIsTopologicalAddGroup, instTotallyDisconnectedSpace, NNRat.instContinuousSMulRatReal, Int.isClosedEmbedding_coe_rat, uniformContinuous_coe_real

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_coe_real ๐Ÿ“–mathematicalโ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Real.pseudoMetricSpace
Real.instRatCast
โ€”UniformContinuous.continuous
uniformContinuous_coe_real
dist_cast ๐Ÿ“–mathematicalโ€”Dist.dist
Real
PseudoMetricSpace.toDist
Real.pseudoMetricSpace
Real.instRatCast
MetricSpace.toPseudoMetricSpace
instMetricSpace
โ€”โ€”
dist_eq ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
MetricSpace.toPseudoMetricSpace
instMetricSpace
abs
Real
Real.lattice
Real.instAddGroup
Real.instSub
Real.instRatCast
โ€”โ€”
instIsTopologicalAddGroup ๐Ÿ“–mathematicalโ€”IsTopologicalAddGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
addGroup
โ€”IsUniformAddGroup.to_topologicalAddGroup
instIsUniformAddGroup
instIsTopologicalRing ๐Ÿ“–mathematicalโ€”IsTopologicalRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
โ€”IsTopologicalDivisionRing.toIsTopologicalRing
IsStrictOrderedRing.toIsTopologicalDivisionRing
instIsStrictOrderedRing
instOrderTopology
instIsUniformAddGroup ๐Ÿ“–mathematicalโ€”IsUniformAddGroup
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
addGroup
โ€”IsUniformAddGroup.mk'
uniformContinuous_add
uniformContinuous_neg
instNoncompactSpace ๐Ÿ“–mathematicalโ€”NoncompactSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
โ€”Topology.IsClosedEmbedding.noncompactSpace
instNoncompactSpaceInt
Int.isClosedEmbedding_coe_rat
instOrderTopology ๐Ÿ“–mathematicalโ€”OrderTopology
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
instPreorder
โ€”induced_orderTopology
instOrderTopologyReal
cast_lt
Real.instIsStrictOrderedRing
exists_rat_btwn
Real.instArchimedean
isDenseEmbedding_coe_real ๐Ÿ“–mathematicalโ€”IsDenseEmbedding
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Real.pseudoMetricSpace
Real.instRatCast
โ€”IsUniformEmbedding.isDenseEmbedding
isUniformEmbedding_coe_real
denseRange_cast
Real.instIsStrictOrderedRing
instOrderTopologyReal
Real.instArchimedean
isEmbedding_coe_real ๐Ÿ“–mathematicalโ€”Topology.IsEmbedding
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Real.pseudoMetricSpace
Real.instRatCast
โ€”IsDenseEmbedding.isEmbedding
isDenseEmbedding_coe_real
isUniformEmbedding_coe_real ๐Ÿ“–mathematicalโ€”IsUniformEmbedding
Real
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Real.pseudoMetricSpace
Real.instRatCast
โ€”isUniformEmbedding_comap
cast_injective
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
totallyBounded_Icc ๐Ÿ“–mathematicalโ€”TotallyBounded
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Set.Icc
instPreorder
โ€”preimage_cast_Icc
Real.instIsStrictOrderedRing
totallyBounded_preimage
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_coe_real
totallyBounded_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
uniformContinuous_abs ๐Ÿ“–mathematicalโ€”UniformContinuous
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
abs
instLattice
addGroup
โ€”Metric.uniformContinuous_iff
lt_of_le_of_lt
cast_abs
Real.instIsStrictOrderedRing
abs_abs_sub_abs_le_abs_sub
Real.instIsOrderedAddMonoid
uniformContinuous_add ๐Ÿ“–mathematicalโ€”UniformContinuous
instUniformSpaceProd
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
โ€”IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_coe_real
cast_add
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
UniformContinuous.comp
Real.uniformContinuous_add
UniformContinuous.prodMap
uniformContinuous_coe_real
uniformContinuous_coe_real ๐Ÿ“–mathematicalโ€”UniformContinuous
Real
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
Real.pseudoMetricSpace
Real.instRatCast
โ€”uniformContinuous_comap
uniformContinuous_neg ๐Ÿ“–mathematicalโ€”UniformContinuous
PseudoMetricSpace.toUniformSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
โ€”Metric.uniformContinuous_iff
cast_neg
neg_sub_neg
abs_sub_comm

---

โ† Back to Index