Documentation

Mathlib.Topology.Instances.Rat

Topology on the rational numbers #

The structure of a metric space on โ„š is introduced in this file, induced from โ„.

theorem Rat.dist_eq (x y : โ„š) :
dist x y = |โ†‘x - โ†‘y|
@[simp]
theorem Rat.dist_cast (x y : โ„š) :
dist โ†‘x โ†‘y = dist x y
@[simp]
theorem Nat.dist_cast_rat (x y : โ„•) :
Dist.dist โ†‘x โ†‘y = Dist.dist x y
@[simp]
theorem Int.dist_cast_rat (x y : โ„ค) :
dist โ†‘x โ†‘y = dist x y
theorem NNRat.dist_eq (p q : โ„šโ‰ฅ0) :
dist p q = dist โ†‘p โ†‘q