Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Topology/Instances/Real/Lemmas.lean

Statistics

MetricCount
Definitions0
Theoremscompact_of_continuous, isBounded_of_continuous, cobounded_eq, continuous_inv, exists_seq_rat_strictAnti_tendsto, exists_seq_rat_strictMono_tendsto, isGLB_of_tendsto_antitoneOn_bddBelow_nat_Ici, isGLB_of_tendsto_antitone_bddBelow, isLUB_of_tendsto_monotoneOn_bddAbove_nat_Ici, isLUB_of_tendsto_monotone_bddAbove, isTopologicalBasis_Ioo_rat, mem_closure_iff, subfield_eq_of_closed, tendsto_atTop_csInf_of_antitoneOn_bddBelow_nat_Ici, tendsto_atTop_csSup_of_monotoneOn_bddAbove_nat_Ici, totallyBounded_ball, uniformContinuous_abs, uniformContinuous_inv, uniformContinuous_mul, closure_of_rat_image_lt, closure_ordConnected_inter_rat
21
Total21

Function.Periodic

Theorems

NameKindAssumesProvesValidatesDepends On
compact_of_continuous πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
IsCompact
Set.range
β€”image_uIcc
Real.instIsOrderedAddMonoid
Real.instArchimedean
IsCompact.image
isCompact_uIcc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
isBounded_of_continuous πŸ“–mathematicalFunction.Periodic
Real
Real.instAdd
Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
β€”IsCompact.isBounded
compact_of_continuous

Real

Theorems

NameKindAssumesProvesValidatesDepends On
cobounded_eq πŸ“–mathematicalβ€”Bornology.cobounded
Real
PseudoMetricSpace.toBornology
pseudoMetricSpace
Filter
Filter.instSup
Filter.atBot
instPreorder
Filter.atTop
β€”Metric.comap_dist_right_atTop
sub_zero
Filter.comap_abs_atTop
instIsOrderedAddMonoid
continuous_inv πŸ“–mathematicalβ€”Continuous
Real
instZero
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
β€”ContinuousOn.restrict
continuousOn_invβ‚€
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
exists_seq_rat_strictAnti_tendsto πŸ“–mathematicalβ€”StrictAnti
Nat.instPreorder
Rat.instPreorder
Real
instLT
instRatCast
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”DenseRange.exists_seq_strictAnti_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Rat.denseRange_cast
instArchimedean
StrictMono.monotone
Rat.cast_strictMono
exists_seq_rat_strictMono_tendsto πŸ“–mathematicalβ€”StrictMono
Nat.instPreorder
Rat.instPreorder
Real
instLT
instRatCast
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”DenseRange.exists_seq_strictMono_tendsto
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instNoMinOrderOfNontrivial
instIsOrderedRing
instNontrivial
TopologicalSpace.PseudoMetrizableSpace.firstCountableTopology
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Rat.denseRange_cast
instArchimedean
StrictMono.monotone
Rat.cast_strictMono
isGLB_of_tendsto_antitoneOn_bddBelow_nat_Ici πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
AntitoneOn
instPreorder
Set.Ici
BddBelow
instLE
Set.image
IsGLBβ€”tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_atTop_csInf_of_antitoneOn_bddBelow_nat_Ici
isGLB_csInf
Set.image_nonempty
Set.nonempty_Ici
isGLB_of_tendsto_antitone_bddBelow πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Antitone
instPreorder
BddBelow
instLE
Set.range
IsGLBβ€”tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Filter.atTop_neBot
tendsto_atTop_ciInf
LinearOrder.infConvergenceClass
isGLB_ciInf
isLUB_of_tendsto_monotoneOn_bddAbove_nat_Ici πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
MonotoneOn
instPreorder
Set.Ici
BddAbove
instLE
Set.image
IsLUBβ€”tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
tendsto_atTop_csSup_of_monotoneOn_bddAbove_nat_Ici
isLUB_csSup
Set.image_nonempty
Set.nonempty_Ici
isLUB_of_tendsto_monotone_bddAbove πŸ“–mathematicalFilter.Tendsto
Real
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Monotone
instPreorder
BddAbove
instLE
Set.range
IsLUBβ€”tendsto_nhds_unique
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
Filter.atTop_neBot
tendsto_atTop_ciSup
LinearOrder.supConvergenceClass
isLUB_ciSup
isTopologicalBasis_Ioo_rat πŸ“–mathematicalβ€”TopologicalSpace.IsTopologicalBasis
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Set.iUnion
Set
Set.instSingletonSet
Set.Ioo
instPreorder
instRatCast
β€”TopologicalSpace.isTopologicalBasis_of_isOpen_of_nhds
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
mem_nhds_iff_exists_Ioo_subset
instNoMaxOrderOfNontrivial
instIsOrderedRing
instNontrivial
instNoMinOrderOfNontrivial
IsOpen.mem_nhds
exists_rat_btwn
instIsStrictOrderedRing
instArchimedean
Rat.cast_lt
LT.lt.trans
mem_closure_iff πŸ“–mathematicalβ€”Real
Set
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instLT
abs
lattice
instAddGroup
instSub
β€”mem_closure_iff_nhds_basis
Metric.nhds_basis_ball
subfield_eq_of_closed πŸ“–mathematicalβ€”Top.top
Subfield
Real
instDivisionRing
Subfield.instTop
β€”SetLike.ext'_iff
Subfield.coe_top
IsClosed.closure_eq
Dense.closure_eq
Dense.mono
SubfieldClass.ratCast_mem
Subfield.instSubfieldClass
Rat.denseRange_cast
instIsStrictOrderedRing
instOrderTopologyReal
instArchimedean
tendsto_atTop_csInf_of_antitoneOn_bddBelow_nat_Ici πŸ“–mathematicalAntitoneOn
Real
Nat.instPreorder
instPreorder
Set.Ici
BddBelow
instLE
Set.image
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
InfSet.sInf
instInfSet
β€”Filter.tendsto_add_atTop_iff_nat
Set.range_add_eq_image_Ici
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sInf_range
tendsto_atTop_ciInf
LinearOrder.infConvergenceClass
instOrderTopologyReal
antitone_add_nat_iff_antitoneOn_nat_Ici
Set.Ici.eq_1
tendsto_atTop_csSup_of_monotoneOn_bddAbove_nat_Ici πŸ“–mathematicalMonotoneOn
Real
Nat.instPreorder
instPreorder
Set.Ici
BddAbove
instLE
Set.image
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
SupSet.sSup
instSupSet
β€”Filter.tendsto_add_atTop_iff_nat
Set.range_add_eq_image_Ici
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
sSup_range
tendsto_atTop_ciSup
LinearOrder.supConvergenceClass
instOrderTopologyReal
monotone_add_nat_iff_monotoneOn_nat_Ici
Set.Ici.eq_1
totallyBounded_ball πŸ“–mathematicalβ€”TotallyBounded
Real
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
Metric.ball
β€”ball_eq_Ioo
totallyBounded_Ioo
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
uniformContinuous_abs πŸ“–mathematicalβ€”UniformContinuous
Real
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
abs
lattice
instAddGroup
β€”Metric.uniformContinuous_iff
lt_of_le_of_lt
abs_abs_sub_abs_le_abs_sub
instIsOrderedAddMonoid
uniformContinuous_inv πŸ“–mathematicalReal
instLT
instZero
instLE
abs
lattice
instAddGroup
UniformContinuous
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instInv
β€”Metric.uniformContinuous_iff
rat_inv_continuous_lemma
instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
uniformContinuous_mul πŸ“–mathematicalReal
instLT
abs
lattice
instAddGroup
UniformContinuous
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
instUniformSpaceProd
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
instMul
β€”Metric.uniformContinuous_iff
rat_mul_continuous_lemma
instIsStrictOrderedRing
IsAbsoluteValue.abs_isAbsoluteValue
max_lt_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
closure_of_rat_image_lt πŸ“–mathematicalβ€”closure
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.image
Real.instRatCast
setOf
Real.instLE
β€”Set.ext
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toCharZero
closure_Ioi
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
closure_ordConnected_inter_rat
Set.ordConnected_Ioi
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.mul_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
AddLeftCancelSemigroup.toIsLeftCancelAdd
closure_ordConnected_inter_rat πŸ“–mathematicalSet.Nontrivial
Real
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set
Set.instInter
Set.range
Real.instRatCast
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_mono
Set.inter_subset_left
IsClosed.closure_subset_iff
isClosed_closure
Real.mem_closure_iff
Set.Nontrivial.exists_ne
Ne.lt_or_gt
exists_rat_btwn
Real.instIsStrictOrderedRing
Real.instArchimedean
max_lt
sub_lt_self
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.OrdConnected.out
LT.lt.le
max_lt_iff
abs_sub_comm
abs_of_pos
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
lt_min
lt_add_of_pos_right
lt_min_iff

---

← Back to Index