Topological properties of โ #
@[simp]
theorem
Real.uniformContinuous_inv
(s : Set โ)
{r : โ}
(r0 : 0 < r)
(H : โ x โ s, r โค |x|)
:
UniformContinuous fun (p : โs) => (โp)โปยน
theorem
Real.exists_seq_rat_strictMono_tendsto
(x : โ)
:
โ (u : โ โ โ), StrictMono u โง (โ (n : โ), โ(u n) < x) โง Filter.Tendsto (fun (x : โ) => โ(u x)) Filter.atTop (nhds x)
theorem
Real.exists_seq_rat_strictAnti_tendsto
(x : โ)
:
โ (u : โ โ โ), StrictAnti u โง (โ (n : โ), x < โ(u n)) โง Filter.Tendsto (fun (x : โ) => โ(u x)) Filter.atTop (nhds x)
theorem
Function.Periodic.compact_of_continuous
{ฮฑ : Type u}
[TopologicalSpace ฮฑ]
{f : โ โ ฮฑ}
{c : โ}
(hp : Periodic f c)
(hc : c โ 0)
(hf : Continuous f)
:
A continuous, periodic function has compact range.
theorem
Function.Periodic.isBounded_of_continuous
{ฮฑ : Type u}
[PseudoMetricSpace ฮฑ]
{f : โ โ ฮฑ}
{c : โ}
(hp : Periodic f c)
(hc : c โ 0)
(hf : Continuous f)
:
A continuous, periodic function is bounded.
theorem
Real.tendsto_atTop_csSup_of_monotoneOn_bddAbove_nat_Ici
{f : โ โ โ}
{k : โ}
(h_mon : MonotoneOn f (Set.Ici k))
(h_bdd : BddAbove (f '' Set.Ici k))
:
Filter.Tendsto f Filter.atTop (nhds (sSup (f '' Set.Ici k)))
A monotone, bounded above sequence f : โ โ โ on Ici k has the finite
limit sSup (f '' Ici k).
theorem
Real.tendsto_atTop_csInf_of_antitoneOn_bddBelow_nat_Ici
{f : โ โ โ}
{k : โ}
(h_ant : AntitoneOn f (Set.Ici k))
(h_bdd : BddBelow (f '' Set.Ici k))
:
Filter.Tendsto f Filter.atTop (nhds (sInf (f '' Set.Ici k)))
An antitone, bounded below sequence f : โ โ โ on Ici k has the finite
limit sInf (f '' Ici k).
theorem
Real.isLUB_of_tendsto_monotone_bddAbove
{ฮน : Type u_1}
[Preorder ฮน]
[Nonempty ฮน]
[IsDirected ฮน fun (x1 x2 : ฮน) => x1 โค x2]
{f : ฮน โ โ}
{x : โ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_mon : Monotone f)
(h_bdd : BddAbove (Set.range f))
:
The limit of a monotone, bounded above function f : ฮน โ โ is a least upper bound
of the function.
theorem
Real.isGLB_of_tendsto_antitone_bddBelow
{ฮน : Type u_1}
[Preorder ฮน]
[Nonempty ฮน]
[IsDirected ฮน fun (x1 x2 : ฮน) => x1 โค x2]
{f : ฮน โ โ}
{x : โ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_ant : Antitone f)
(h_bdd : BddBelow (Set.range f))
:
The limit of an antitone, bounded below function f : ฮน โ โ is a greatest lower bound
of the function.
theorem
Real.isLUB_of_tendsto_monotoneOn_bddAbove_nat_Ici
{f : โ โ โ}
{k : โ}
{x : โ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_mon : MonotoneOn f (Set.Ici k))
(h_bdd : BddAbove (f '' Set.Ici k))
:
The limit of an antitone, bounded below sequence f : โ โ โ on Ici k is a least
upper bound of the sequence.
theorem
Real.isGLB_of_tendsto_antitoneOn_bddBelow_nat_Ici
{f : โ โ โ}
{k : โ}
{x : โ}
(h_tto : Filter.Tendsto f Filter.atTop (nhds x))
(h_ant : AntitoneOn f (Set.Ici k))
(h_bdd : BddBelow (f '' Set.Ici k))
:
The limit of an antitone, bounded below sequence f : โ โ โ on Ici k is a greatest
lower bound of the sequence.