Documentation Verification Report

DilationEquiv

πŸ“ Source: Mathlib/Topology/MetricSpace/DilationEquiv.lean

Statistics

MetricCount
DefinitionsDilationEquiv, symm_apply, instEquivLike, instGroup, ratioHom, refl, toDilation, toEquiv, toHomeomorph, toPerm, trans, DilationEquivClass, toDilationEquiv, Β«term_β‰ƒα΅ˆ_Β»
14
Theoremsapply_symm_apply, bijective, coe_inv, coe_mul, coe_one, coe_pow, coe_symm_toHomeomorph, coe_toEquiv, coe_toHomeomorph, edist_eq', ext, ext_iff, injective, instDilationEquivClass, inv_def, map_cobounded, mul_def, one_def, ratio_inv, ratio_pow, ratio_refl, ratio_symm, ratio_toDilation, ratio_trans, ratio_zpow, refl_apply, refl_symm, refl_trans, self_trans_symm, surjective, symm_apply_apply, symm_bijective, symm_symm, symm_trans_self, toHomeomorph_symm, toPerm_apply, trans_apply, trans_refl, edist_eq', coe_symm_toDilationEquiv, coe_toDilationEquiv, toDilationEquiv_apply, toDilationEquiv_ratio, toDilationEquiv_symm, toDilationEquiv_toDilation, instDilationClassOfDilationEquivClass
46
Total60

DilationEquiv

Definitions

NameCategoryTheorems
instEquivLike πŸ“–CompOp
35 mathmath: coe_toHomeomorph, smulTorsor_symm_apply, IsometryEquiv.toDilationEquiv_ratio, coe_one, coe_symm_toHomeomorph, trans_apply, bijective, coe_toEquiv, ext_iff, mulRight_symm_apply, symm_apply_apply, mulLeft_symm_apply, mulLeft_apply, ratio_inv, ratio_zpow, smulTorsor_apply, mulRight_apply, ratio_toDilation, instDilationEquivClass, injective, ratio_trans, ratio_refl, apply_symm_apply, IsometryEquiv.toDilationEquiv_apply, smulTorsor_ratio, refl_apply, coe_mul, surjective, IsometryEquiv.coe_symm_toDilationEquiv, coe_inv, smulTorsor_preimage_ball, coe_pow, ratio_symm, IsometryEquiv.coe_toDilationEquiv, ratio_pow
instGroup πŸ“–CompOp
11 mathmath: toPerm_apply, coe_one, ratio_inv, ratio_zpow, mul_def, one_def, coe_mul, inv_def, coe_inv, coe_pow, ratio_pow
ratioHom πŸ“–CompOpβ€”
refl πŸ“–CompOp
8 mathmath: refl_symm, trans_refl, ratio_refl, refl_trans, self_trans_symm, refl_apply, one_def, symm_trans_self
toDilation πŸ“–CompOp
2 mathmath: ratio_toDilation, IsometryEquiv.toDilationEquiv_toDilation
toEquiv πŸ“–CompOp
3 mathmath: toPerm_apply, edist_eq', coe_toEquiv
toHomeomorph πŸ“–CompOp
3 mathmath: coe_toHomeomorph, coe_symm_toHomeomorph, toHomeomorph_symm
toPerm πŸ“–CompOp
1 mathmath: toPerm_apply
trans πŸ“–CompOp
7 mathmath: trans_apply, trans_refl, ratio_trans, refl_trans, mul_def, self_trans_symm, symm_trans_self

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.right_inv
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.bijective
coe_inv πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
symm
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
β€”β€”
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
Nat.iterate
β€”coe_toEquiv
toPerm_apply
map_pow
MonoidHom.instMonoidHomClass
Equiv.Perm.coe_pow
coe_symm_toHomeomorph πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorph
DilationEquiv
instEquivLike
symm
β€”β€”
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
DilationEquiv
instEquivLike
β€”β€”
coe_toHomeomorph πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorph
DilationEquiv
instEquivLike
β€”β€”
edist_eq' πŸ“–mathematicalβ€”EDist.edist
PseudoEMetricSpace.toEDist
Equiv.toFun
toEquiv
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
β€”β€”
ext πŸ“–β€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
β€”ext
injective πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.injective
instDilationEquivClass πŸ“–mathematicalβ€”DilationEquivClass
DilationEquiv
instEquivLike
β€”edist_eq'
inv_def πŸ“–mathematicalβ€”DilationEquiv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
symm
β€”β€”
map_cobounded πŸ“–mathematicalβ€”Filter.map
DFunLike.coe
EquivLike.toFunLike
Bornology.cobounded
PseudoMetricSpace.toBornology
β€”Dilation.comap_cobounded
instDilationClassOfDilationEquivClass
Filter.map_comap_of_surjective
EquivLike.surjective
mul_def πŸ“–mathematicalβ€”DilationEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
trans
β€”β€”
one_def πŸ“–mathematicalβ€”DilationEquiv
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
refl
β€”β€”
ratio_inv πŸ“–mathematicalβ€”Dilation.ratio
DilationEquiv
EquivLike.toFunLike
instEquivLike
instDilationClassOfDilationEquivClass
instDilationEquivClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
instGroup
NNReal
NNReal.instInv
β€”ratio_symm
ratio_pow πŸ“–mathematicalβ€”Dilation.ratio
DilationEquiv
EquivLike.toFunLike
instEquivLike
instDilationClassOfDilationEquivClass
instDilationEquivClass
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
NNReal
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
β€”MonoidHom.map_pow
ratio_refl πŸ“–mathematicalβ€”Dilation.ratio
DilationEquiv
EquivLike.toFunLike
instEquivLike
instDilationClassOfDilationEquivClass
instDilationEquivClass
refl
NNReal
instOneNNReal
β€”Dilation.ratio_id
ratio_symm πŸ“–mathematicalβ€”Dilation.ratio
DilationEquiv
EquivLike.toFunLike
instEquivLike
instDilationClassOfDilationEquivClass
instDilationEquivClass
symm
NNReal
NNReal.instInv
β€”eq_inv_of_mul_eq_one_left
instDilationClassOfDilationEquivClass
instDilationEquivClass
ratio_trans
symm_trans_self
ratio_refl
ratio_toDilation πŸ“–mathematicalβ€”Dilation.ratio
Dilation
Dilation.funLike
Dilation.toDilationClass
toDilation
DilationEquiv
EquivLike.toFunLike
instEquivLike
instDilationClassOfDilationEquivClass
instDilationEquivClass
β€”Dilation.toDilationClass
ratio_trans πŸ“–mathematicalβ€”Dilation.ratio
DilationEquiv
EquivLike.toFunLike
instEquivLike
instDilationClassOfDilationEquivClass
instDilationEquivClass
trans
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”instDilationClassOfDilationEquivClass
instDilationEquivClass
Function.Surjective.forallβ‚‚
surjective
Dilation.edist_eq
MulZeroClass.mul_zero
ENNReal.mul_top
Dilation.ratio_of_trivial
mul_one
Dilation.toDilationClass
Dilation.ratio_comp'
Mathlib.Tactic.Push.not_forall_eq
mul_comm
ratio_zpow πŸ“–mathematicalβ€”Dilation.ratio
DilationEquiv
EquivLike.toFunLike
instEquivLike
instDilationClassOfDilationEquivClass
instDilationEquivClass
DivInvMonoid.toZPow
Group.toDivInvMonoid
instGroup
NNReal
NNReal.zpow
β€”MonoidHom.map_zpow
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
refl_trans πŸ“–mathematicalβ€”trans
refl
β€”β€”
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
symm_apply_apply
surjective πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.left_inv
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
DilationEquiv
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
apply_symm_apply
toHomeomorph_symm πŸ“–mathematicalβ€”toHomeomorph
symm
Homeomorph.symm
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”β€”
toPerm_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
DilationEquiv
Equiv.Perm
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
instGroup
Equiv.Perm.permGroup
MonoidHom.instFunLike
toPerm
toEquiv
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
instEquivLike
trans
β€”β€”
trans_refl πŸ“–mathematicalβ€”trans
refl
β€”β€”

DilationEquiv.Simps

Definitions

NameCategoryTheorems
symm_apply πŸ“–CompOpβ€”

DilationEquivClass

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq' πŸ“–mathematicalβ€”EDist.edist
PseudoEMetricSpace.toEDist
DFunLike.coe
EquivLike.toFunLike
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
β€”β€”

IsometryEquiv

Definitions

NameCategoryTheorems
toDilationEquiv πŸ“–CompOp
6 mathmath: toDilationEquiv_symm, toDilationEquiv_ratio, toDilationEquiv_toDilation, toDilationEquiv_apply, coe_symm_toDilationEquiv, coe_toDilationEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_symm_toDilationEquiv πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
DilationEquiv.instEquivLike
DilationEquiv.symm
toDilationEquiv
IsometryEquiv
instEquivLike
symm
β€”β€”
coe_toDilationEquiv πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
DilationEquiv.instEquivLike
toDilationEquiv
IsometryEquiv
instEquivLike
β€”β€”
toDilationEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
DilationEquiv
EquivLike.toFunLike
DilationEquiv.instEquivLike
toDilationEquiv
IsometryEquiv
instEquivLike
β€”β€”
toDilationEquiv_ratio πŸ“–mathematicalβ€”Dilation.ratio
DilationEquiv
EquivLike.toFunLike
DilationEquiv.instEquivLike
instDilationClassOfDilationEquivClass
DilationEquiv.instDilationEquivClass
toDilationEquiv
NNReal
instOneNNReal
β€”instDilationClassOfDilationEquivClass
DilationEquiv.instDilationEquivClass
Dilation.toDilationClass
DilationEquiv.ratio_toDilation
isometry
toDilationEquiv_toDilation
Isometry.toDilation_ratio
toDilationEquiv_symm πŸ“–mathematicalβ€”toDilationEquiv
symm
DilationEquiv.symm
β€”β€”
toDilationEquiv_toDilation πŸ“–mathematicalβ€”DilationEquiv.toDilation
toDilationEquiv
Isometry.toDilation
DFunLike.coe
IsometryEquiv
EquivLike.toFunLike
instEquivLike
isometry
β€”β€”

(root)

Definitions

NameCategoryTheorems
DilationEquiv πŸ“–CompData
40 mathmath: DilationEquiv.toPerm_apply, DilationEquiv.coe_toHomeomorph, DilationEquiv.smulTorsor_symm_apply, IsometryEquiv.toDilationEquiv_ratio, DilationEquiv.coe_one, DilationEquiv.coe_symm_toHomeomorph, DilationEquiv.trans_apply, DilationEquiv.symm_bijective, DilationEquiv.bijective, DilationEquiv.coe_toEquiv, DilationEquiv.ext_iff, DilationEquiv.mulRight_symm_apply, DilationEquiv.symm_apply_apply, DilationEquiv.mulLeft_symm_apply, DilationEquiv.mulLeft_apply, DilationEquiv.ratio_inv, DilationEquiv.ratio_zpow, DilationEquiv.smulTorsor_apply, DilationEquiv.mulRight_apply, DilationEquiv.ratio_toDilation, DilationEquiv.instDilationEquivClass, DilationEquiv.injective, DilationEquiv.ratio_trans, DilationEquiv.ratio_refl, DilationEquiv.apply_symm_apply, IsometryEquiv.toDilationEquiv_apply, DilationEquiv.smulTorsor_ratio, DilationEquiv.mul_def, DilationEquiv.refl_apply, DilationEquiv.one_def, DilationEquiv.coe_mul, DilationEquiv.surjective, IsometryEquiv.coe_symm_toDilationEquiv, DilationEquiv.inv_def, DilationEquiv.coe_inv, DilationEquiv.smulTorsor_preimage_ball, DilationEquiv.coe_pow, DilationEquiv.ratio_symm, IsometryEquiv.coe_toDilationEquiv, DilationEquiv.ratio_pow
DilationEquivClass πŸ“–CompData
1 mathmath: DilationEquiv.instDilationEquivClass
Β«term_β‰ƒα΅ˆ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instDilationClassOfDilationEquivClass πŸ“–mathematicalβ€”DilationClass
EquivLike.toFunLike
β€”DilationEquivClass.edist_eq'

---

← Back to Index