Documentation

Mathlib.Topology.MetricSpace.DilationEquiv

Dilation equivalence #

In this file we define DilationEquiv X Y, a type of bundled equivalences between X and Y such that edist (f x) (f y) = r * edist x y for some r : ℝ≥0, r ≠ 0.

We also develop basic API about these equivalences.

TODO #

Typeclass saying that F is a type of bundled equivalences such that all e : F are dilations.

Instances
    structure DilationEquiv (X : Type u_1) (Y : Type u_2) [PseudoEMetricSpace X] [PseudoEMetricSpace Y] extends X Y, X →ᵈ Y :
    Type (max u_1 u_2)

    Type of equivalences X ≃ Y such that ∀ x y, edist (f x) (f y) = r * edist x y for some r : ℝ≥0, r ≠ 0.

    Instances For

      Type of equivalences X ≃ Y such that ∀ x y, edist (f x) (f y) = r * edist x y for some r : ℝ≥0, r ≠ 0.

      Equations
        Instances For
          @[simp]
          theorem DilationEquiv.coe_toEquiv {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) :
          e.toEquiv = e
          theorem DilationEquiv.ext {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {e e' : X ≃ᵈ Y} (h : ∀ (x : X), e x = e' x) :
          e = e'
          theorem DilationEquiv.ext_iff {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {e e' : X ≃ᵈ Y} :
          e = e' ∀ (x : X), e x = e' x
          def DilationEquiv.symm {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) :
          Y ≃ᵈ X

          Inverse DilationEquiv.

          Equations
            Instances For
              @[simp]
              theorem DilationEquiv.symm_symm {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) :
              e.symm.symm = e
              @[simp]
              theorem DilationEquiv.apply_symm_apply {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) (x : Y) :
              e (e.symm x) = x
              @[simp]
              theorem DilationEquiv.symm_apply_apply {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) (x : X) :
              e.symm (e x) = x
              def DilationEquiv.Simps.symm_apply {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) :
              YX

              See Note [custom simps projection].

              Equations
                Instances For

                  Identity map as a DilationEquiv.

                  Equations
                    Instances For
                      def DilationEquiv.trans {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] [PseudoEMetricSpace Z] (e₁ : X ≃ᵈ Y) (e₂ : Y ≃ᵈ Z) :
                      X ≃ᵈ Z

                      Composition of DilationEquivs.

                      Equations
                        Instances For
                          @[simp]
                          theorem DilationEquiv.trans_apply {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] [PseudoEMetricSpace Z] (e₁ : X ≃ᵈ Y) (e₂ : Y ≃ᵈ Z) :
                          (e₁.trans e₂) = e₂ e₁
                          @[simp]
                          theorem DilationEquiv.refl_trans {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) :
                          (refl X).trans e = e
                          @[simp]
                          theorem DilationEquiv.trans_refl {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵈ Y) :
                          e.trans (refl Y) = e
                          theorem DilationEquiv.mul_def {X : Type u_1} [PseudoEMetricSpace X] (e e' : X ≃ᵈ X) :
                          e * e' = e'.trans e
                          @[simp]
                          theorem DilationEquiv.coe_mul {X : Type u_1} [PseudoEMetricSpace X] (e e' : X ≃ᵈ X) :
                          ⇑(e * e') = e e'
                          noncomputable def DilationEquiv.ratioHom {X : Type u_1} [PseudoEMetricSpace X] :

                          Dilation.ratio as a monoid homomorphism.

                          Equations
                            Instances For

                              DilationEquiv.toEquiv as a monoid homomorphism.

                              Equations
                                Instances For
                                  theorem DilationEquiv.coe_pow {X : Type u_1} [PseudoEMetricSpace X] (e : X ≃ᵈ X) (n : ) :
                                  ⇑(e ^ n) = (⇑e)^[n]

                                  Every isometry equivalence is a dilation equivalence of ratio 1.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem IsometryEquiv.toDilationEquiv_apply {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (e : X ≃ᵢ Y) (x : X) :

                                      Reinterpret a DilationEquiv as a homeomorphism.

                                      Equations
                                        Instances For