Documentation Verification Report

Constructions

๐Ÿ“ Source: Mathlib/Topology/MetricSpace/Pseudo/Constructions.lean

Statistics

MetricCount
DefinitionsinstPseudoMetricSpace, comapPseudoMetricSpace, instPseudoMetricSpace, pseudoMetricSpaceMax, induced, pseudoMetricSpace, comapPseudoMetricSpace, instPseudoMetricSpace, instPseudoMetricSpaceNNReal
9
Theoremsdist_op, dist_unop, nndist_op, nndist_unop, dist, nndist, dist, nndist, dist_op, dist_unop, nndist_op, nndist_unop, ball_zero_eq_Ico, ball_zero_eq_Ico', closedBall_zero_eq_Icc, closedBall_zero_eq_Icc', dist_eq, le_add_nndist, nndist_eq, nndist_zero_eq_val, nndist_zero_eq_val', dist_eq, dist_eq, image_ball, image_closedBall, nndist_eq, preimage_ball, preimage_closedBall, dist_eq, dist_up_up, nndist_eq, nndist_up_up, dist, nndist, ball_prod_same, closedBall_prod_same, continuous_dist, continuous_iff_continuous_dist, continuous_nndist, dist_prod_same_left, dist_prod_same_right, sphere_prod, uniformContinuous_dist, uniformContinuous_nndist
44
Total53

AddOpposite

Definitions

NameCategoryTheorems
instPseudoMetricSpace ๐Ÿ“–CompOp
5 mathmath: nndist_op, dist_unop, dist_op, lipschitzAdd, nndist_unop

Theorems

NameKindAssumesProvesValidatesDepends On
dist_op ๐Ÿ“–mathematicalโ€”Dist.dist
AddOpposite
PseudoMetricSpace.toDist
instPseudoMetricSpace
op
โ€”โ€”
dist_unop ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
unop
AddOpposite
instPseudoMetricSpace
โ€”โ€”
nndist_op ๐Ÿ“–mathematicalโ€”NNDist.nndist
AddOpposite
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
op
โ€”โ€”
nndist_unop ๐Ÿ“–mathematicalโ€”NNDist.nndist
PseudoMetricSpace.toNNDist
unop
AddOpposite
instPseudoMetricSpace
โ€”โ€”

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
dist ๐Ÿ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
โ€”compโ‚‚
continuous_dist
nndist ๐Ÿ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NNReal
instPseudoMetricSpaceNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
โ€”compโ‚‚
continuous_nndist

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
dist ๐Ÿ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Dist.dist
PseudoMetricSpace.toDist
Real.pseudoMetricSpace
โ€”comp
Continuous.tendsto
continuous_dist
prodMk_nhds
nndist ๐Ÿ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
instPseudoMetricSpaceNNReal
โ€”comp
Continuous.tendsto
continuous_nndist
prodMk_nhds

IsUniformInducing

Definitions

NameCategoryTheorems
comapPseudoMetricSpace ๐Ÿ“–CompOpโ€”

MulOpposite

Definitions

NameCategoryTheorems
instPseudoMetricSpace ๐Ÿ“–CompOp
9 mathmath: BoundedContinuousFunction.instIsCentralScalar, IsBoundedSMul.op, NormedAddGroupHom.isCentralScalar, nndist_op, dist_unop, lipschitzMul, dist_op, NonUnitalSeminormedRing.isBoundedSMulOpposite, nndist_unop

Theorems

NameKindAssumesProvesValidatesDepends On
dist_op ๐Ÿ“–mathematicalโ€”Dist.dist
MulOpposite
PseudoMetricSpace.toDist
instPseudoMetricSpace
op
โ€”โ€”
dist_unop ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
unop
MulOpposite
instPseudoMetricSpace
โ€”โ€”
nndist_op ๐Ÿ“–mathematicalโ€”NNDist.nndist
MulOpposite
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
op
โ€”โ€”
nndist_unop ๐Ÿ“–mathematicalโ€”NNDist.nndist
PseudoMetricSpace.toNNDist
unop
MulOpposite
instPseudoMetricSpace
โ€”โ€”

NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
ball_zero_eq_Ico ๐Ÿ“–mathematicalโ€”Metric.ball
NNReal
instPseudoMetricSpaceNNReal
instZeroNNReal
Set.Ico
PartialOrder.toPreorder
instPartialOrderNNReal
Real.toNNReal
โ€”LT.lt.le
sup_of_le_left
ball_zero_eq_Ico'
Set.Ico_eq_empty
ball_zero_eq_Ico' ๐Ÿ“–mathematicalโ€”Metric.ball
NNReal
instPseudoMetricSpaceNNReal
instZeroNNReal
toReal
Set.Ico
PartialOrder.toPreorder
instPartialOrderNNReal
โ€”Set.ext
nndist_zero_eq_val'
instCanonicallyOrderedAdd
closedBall_zero_eq_Icc ๐Ÿ“–mathematicalReal
Real.instLE
Real.instZero
Metric.closedBall
NNReal
instPseudoMetricSpaceNNReal
instZeroNNReal
Set.Icc
PartialOrder.toPreorder
instPartialOrderNNReal
Real.toNNReal
โ€”sup_of_le_left
closedBall_zero_eq_Icc'
closedBall_zero_eq_Icc' ๐Ÿ“–mathematicalโ€”Metric.closedBall
NNReal
instPseudoMetricSpaceNNReal
instZeroNNReal
toReal
Set.Icc
PartialOrder.toPreorder
instPartialOrderNNReal
โ€”Set.ext
nndist_zero_eq_val'
instCanonicallyOrderedAdd
dist_eq ๐Ÿ“–mathematicalโ€”Dist.dist
NNReal
PseudoMetricSpace.toDist
instPseudoMetricSpaceNNReal
abs
Real
Real.lattice
Real.instAddGroup
Real.instSub
toReal
โ€”โ€”
le_add_nndist ๐Ÿ“–mathematicalโ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
instPseudoMetricSpaceNNReal
โ€”sub_le_iff_le_add'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_of_abs_le
Eq.ge
dist_eq
coe_le_coe
coe_add
coe_nndist
nndist_eq ๐Ÿ“–mathematicalโ€”NNDist.nndist
NNReal
PseudoMetricSpace.toNNDist
instPseudoMetricSpaceNNReal
instMax
instSub
โ€”eq_of_forall_ge_iff
tsub_le_iff_right
instOrderedSub
Real.instIsOrderedAddMonoid
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
nndist_zero_eq_val ๐Ÿ“–mathematicalโ€”NNDist.nndist
NNReal
PseudoMetricSpace.toNNDist
instPseudoMetricSpaceNNReal
instZeroNNReal
โ€”nndist_eq
zero_tsub
instCanonicallyOrderedAdd
instOrderedSub
tsub_zero
max_eq_right
nndist_zero_eq_val' ๐Ÿ“–mathematicalโ€”NNDist.nndist
NNReal
PseudoMetricSpace.toNNDist
instPseudoMetricSpaceNNReal
instZeroNNReal
โ€”nndist_comm
nndist_zero_eq_val

Prod

Definitions

NameCategoryTheorems
pseudoMetricSpaceMax ๐Ÿ“–CompOp
12 mathmath: MeasureTheory.Measure.IsUnifLocDoublingMeasure.volume_prod, sphere_prod, prod_properSpace, dist_eq, lipschitz_with_lipschitz_const_mul, dist_prod_same_left, closedBall_prod_same, dist_prod_same_right, ball_prod_same, instIsBoundedSMul, IsUnifLocDoublingMeasure.prod, lipschitz_with_lipschitz_const_add

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpaceMax
Real
Real.instMax
โ€”โ€”

PseudoMetricSpace

Definitions

NameCategoryTheorems
induced ๐Ÿ“–CompOp
2 mathmath: isometry_induced, WithAbs.pseudoMetricSpace_induced_of_comp

Subtype

Definitions

NameCategoryTheorems
pseudoMetricSpace ๐Ÿ“–CompOp
79 mathmath: Unitary.openPartialHomeomorph_source, Metric.PiNatEmbed.continuous_distDenseSeq_inv, AffineIsometryEquiv.ofTop_apply, Unitary.continuousOn_argSelfAdjoint, Submodule.starProjection_singleton, EuclideanGeometry.dist_orthogonalProjection_eq_iff_oangle_eq, polynomialFunctions.starClosure_topologicalClosure, LinearMap.IsSymmetric.directSum_decompose_apply, Submodule.reflection_singleton_apply, InnerProductSpace.gramSchmidt_def, Submodule.orthogonalProjection_bot, AffineSubspace.coe_subtypeโ‚แตข, Submonoid.lipschitzMul, FiniteDimensional.RCLike.properSpace_submodule, continuousMap_mem_polynomialFunctions_closure, Submodule.reflection_orthogonalComplement_singleton_eq_neg, LinearIsometryEquiv.reflections_generate_dim_aux, Affine.Triangle.dist_circumcenter_reflection_orthocenter, preimage_ball, AffineIsometryEquiv.coe_ofEq_apply, AffineSubspace.isometryEquivMap.toAffineMap_eq, LinearIsometryEquiv.reflections_generate, AffineIsometryEquiv.ofTop_symm_apply_coe, AffineIsometryEquiv.ofEq_symm, Submodule.linearEquiv_det_reflection, stereoToFun_apply, IsUltrametricDist.subtype, AffineSubspace.toContinuousAffineMap_subtypeโ‚แตข, Affine.Triangle.dist_orthocenter_reflection_circumcenter, dist_eq, Submodule.smul_starProjection_singleton, Submodule.starProjection_bot, Submodule.starProjection_unit_singleton, Submodule.reflection_sub, EuclideanGeometry.orthogonalProjection_affineSpan_singleton, preimage_closedBall, PeriodPair.instProperSpaceSubtypeComplexMemSubmoduleIntLattice, AffineSubspace.isometryEquivMap.coe_apply, InnerProductSpace.gramSchmidt_def', Unitary.openPartialHomeomorph_target, EuclideanGeometry.eq_or_eq_reflection_of_dist_eq, Valued.integer.coe_span_singleton_eq_closedBall, Submodule.det_reflection, AffineSubspace.subtypeโ‚แตข_linear, image_closedBall, MeasureTheory.Measure.toSphereBallBound_mul_measureReal_unitBall_le_toSphere_ball, nndist_eq, MeasureTheory.Lp.simpleFunc.isBoundedSMul, Affine.Triangle.dist_circumcenter_reflection_orthocenter_finset, Submodule.reflection_bot, Unitary.isPathConnected_ball, Submodule.starProjection_orthogonalComplement_singleton_eq_zero, EuclideanGeometry.hasFDerivAt_inversion, AffineSubspace.signedInfDist_singleton, AffineSubspace.subtypeโ‚แตข_linearIsometry, AffineIsometryEquiv.ofEq_rfl, AddSubmonoid.lipschitzAdd, LinearIsometryEquiv.reflections_generate_dim, Irreducible.maximalIdeal_eq_closedBall, stereographic_apply, polynomialFunctions.topologicalClosure, AffineSubspace.isometryEquivMap.apply_symm_apply, Irreducible.maximalIdeal_pow_eq_closedBall_pow, ContinuousMap.elemental_id_eq_top, MeasureTheory.Measure.toSphereBallBound_mul_measure_unitBall_le_toSphere_ball, polynomialFunctions_closure_eq_top', unitary.isPathConnected_ball, ProperSpace.of_isClosed, Affine.Simplex.reflection_circumcenter_eq_affineCombination_of_pointsWithCircumcenter, polynomialFunctions_closure_eq_top, AffineSubspace.subtypeโ‚แตข_toAffineMap, Affine.Triangle.dist_orthocenter_reflection_circumcenter_finset, EuclideanGeometry.dist_orthogonalProjection_line_eq_iff_two_zsmul_oangle_eq, EuclideanGeometry.dist_orthogonalProjection_line_eq_of_two_zsmul_oangle_eq, Submodule.orthogonalProjection_orthogonalComplement_singleton_eq_zero, LinearMap.exists_map_addHaar_eq_smul_addHaar', instProperSpaceSubtypeMemSubmoduleOfCompleteSpaceOfLocallyCompactSpace, image_ball, unitary.continuousOn_argSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
pseudoMetricSpace
โ€”โ€”
image_ball ๐Ÿ“–mathematicalโ€”Set.image
Metric.ball
pseudoMetricSpace
Set
Set.instInter
setOf
โ€”preimage_ball
Set.image_preimage_eq_inter_range
range_val_subtype
image_closedBall ๐Ÿ“–mathematicalโ€”Set.image
Metric.closedBall
pseudoMetricSpace
Set
Set.instInter
setOf
โ€”preimage_closedBall
Set.image_preimage_eq_inter_range
range_val_subtype
nndist_eq ๐Ÿ“–mathematicalโ€”NNDist.nndist
PseudoMetricSpace.toNNDist
pseudoMetricSpace
โ€”โ€”
preimage_ball ๐Ÿ“–mathematicalโ€”Set.preimage
Metric.ball
pseudoMetricSpace
โ€”โ€”
preimage_closedBall ๐Ÿ“–mathematicalโ€”Set.preimage
Metric.closedBall
pseudoMetricSpace
โ€”โ€”

Topology.IsInducing

Definitions

NameCategoryTheorems
comapPseudoMetricSpace ๐Ÿ“–CompOp
1 mathmath: Topology.IsEmbedding.to_isometry

ULift

Definitions

NameCategoryTheorems
instPseudoMetricSpace ๐Ÿ“–CompOp
4 mathmath: nndist_up_up, dist_eq, nndist_eq, dist_up_up

Theorems

NameKindAssumesProvesValidatesDepends On
dist_eq ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
instPseudoMetricSpace
โ€”โ€”
dist_up_up ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
instPseudoMetricSpace
โ€”โ€”
nndist_eq ๐Ÿ“–mathematicalโ€”NNDist.nndist
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
โ€”โ€”
nndist_up_up ๐Ÿ“–mathematicalโ€”NNDist.nndist
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
โ€”โ€”

UniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
dist ๐Ÿ“–mathematicalUniformContinuous
PseudoMetricSpace.toUniformSpace
Real
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
โ€”comp
uniformContinuous_dist
prodMk
nndist ๐Ÿ“–mathematicalUniformContinuous
PseudoMetricSpace.toUniformSpace
NNReal
instPseudoMetricSpaceNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
โ€”comp
uniformContinuous_nndist
prodMk

(root)

Definitions

NameCategoryTheorems
instPseudoMetricSpaceNNReal ๐Ÿ“–CompOp
124 mathmath: MeasureTheory.tendsto_integral_thickenedIndicator_of_isClosed, thickenedIndicator_mono_infEDist, BoundedContinuousFunction.integral_eq_integral_nnrealPart_sub, MeasureTheory.FiniteMeasure.toWeakDualBCNN_apply, thickenedIndicator_one_of_mem_closure, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_apply_comp_toReal, NNReal.tendsto_dist_agmSequences_atTop_zero, MeasureTheory.FiniteMeasure.zero_testAgainstNN, CompactlySupportedContinuousMap.nnrealPart_smul_neg, NNReal.isBoundedSMul, MeasureTheory.ProbabilityMeasure.continuous_lintegral_boundedContinuousFunction, NNReal.dist_agmSequences_fst_snd, NNRealRMK.lintegral_rieszMeasure, thickenedIndicator_zero, MeasureTheory.FiniteMeasure.injective_toWeakDualBCNN, HasOuterApproxClosed.tendsto_apprSeq, CompactlySupportedContinuousMap.toRealLinearMap_apply_apply, MeasureTheory.FiniteMeasure.testAgainstNN_const, thickenedIndicator_le_one, MeasureTheory.FiniteMeasure.tendsto_iff_weakDual_tendsto, MeasureTheory.integrable_thickenedIndicator, rieszContentAux_image_nonempty, BoundedContinuousFunction.lintegral_lt_top_of_nnreal, MeasureTheory.FiniteMeasure.tendsto_iff_forall_lintegral_tendsto, CompactlySupportedContinuousMap.coe_toRealLinearMap, NNReal.isEmbedding_coe, NNReal.closedBall_zero_eq_Icc, NNReal.hasLipschitzAdd, Metric.uniformContinuous_infNndist_pt, lipschitzWith_thickenedIndicator, MeasureTheory.FiniteMeasure.testAgainstNN_coe_eq, CompactlySupportedContinuousMap.toRealLinearMap_apply, uniformContinuous_nndist, CompactlySupportedContinuousMap.toRealPositiveLinear_apply, MeasureTheory.FiniteMeasure.continuous_iff_forall_continuous_lintegral, HasOuterApproxClosed.measure_le_lintegral, indicator_le_thickenedIndicator, BoundedContinuousFunction.abs_self_eq_nnrealPart_add_nnrealPart_neg, isClosedMap_nndist, NNReal.le_add_nndist, BoundedContinuousFunction.nnrealPart_coeFn_eq, NNReal.instIsOrderBornology, MeasureTheory.FiniteMeasure.testAgainstNN_add, Filter.Tendsto.nndist, measure_le_lintegral_thickenedIndicator, one_le_thickenedIndicator_apply', CompactlySupportedContinuousMap.integralLinearMap_apply, MeasureTheory.FiniteMeasure.testAgainstNN_zero, thickenedIndicator_tendsto_indicator_closure, HasOuterApproxClosed.apprSeq_apply_eq_one, NNReal.nndist_eq, MeasureTheory.ProbabilityMeasure.continuous_iff_forall_continuous_lintegral, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_apply, HasOuterApproxClosed.tendsto_lintegral_apprSeq, MeasureTheory.ProbabilityMeasure.coe_toWeakDualBCNN, CompletelyRegularSpace.exists_BCNN, NNRealRMK.le_rieszMeasure_of_isCompact_tsupport_subset, NNReal.ball_zero_eq_Ico', thickenedIndicator_subset, thickenedIndicator_apply, nndist_nnnorm_nnnorm_le', MeasureTheory.FiniteMeasure.testAgainstNN_one, CompactlySupportedContinuousMap.toNNRealLinear_apply, MeasureTheory.tendsto_lintegral_thickenedIndicator_of_isClosed, MeasureTheory.FiniteMeasure.testAgainstNN_lipschitz, uniformContinuous_nnnorm, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_injective, NNReal.instOrderTopology, NNRealRMK.le_rieszMeasure_of_tsupport_subset, thickenedIndicator_mono_infEdist, NNReal.instProperSpace, exists_lt_rieszContentAux_add_pos, NNReal.isUniformEmbedding_coe, uniformContinuous_nnnorm', Continuous.nndist, BoundedContinuousFunction.nnnorm_coeFn_eq, BoundedContinuousFunction.toReal_lintegral_coe_eq_integral, CompactlySupportedContinuousMap.toReal_smul, instBoundedSubNNReal, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_continuous, HasOuterApproxClosed.indicator_le_apprSeq, BoundedContinuousFunction.measurable_coe_ennreal_comp, CompactlySupportedContinuousMap.eq_toRealPositiveLinear_toReal, MeasureTheory.FiniteMeasure.toWeakDualBCNN_continuous, MeasureTheory.ProbabilityMeasure.testAgainstNN_lipschitz, NNReal.ball_zero_eq_Ico, CompactlySupportedContinuousMap.nnrealPart_smul_pos, thickenedIndicator_one, MeasureTheory.FiniteMeasure.isEmbedding_toWeakDualBCNN, NNReal.dist_eq, MeasureTheory.FiniteMeasure.testAgainstNN_smul, UniformContinuous.nndist, ContinuousMapZero.toNNReal_neg_smul, continuousOn_cfc_nnreal_setProd, nndist_nnnorm_nnnorm_le, NNReal.closedBall_zero_eq_Icc', NNReal.nndist_zero_eq_val', NNRealRMK.integral_rieszMeasure, CompactlySupportedContinuousMap.monotone_of_nnreal, ContinuousMapZero.toNNReal_smul, instBoundedMulNNReal, MeasureTheory.FiniteMeasure.testAgainstNN_lipschitz_estimate, MeasureTheory.FiniteMeasure.coe_toWeakDualBCNN, continuousOn_cfcโ‚™_nnreal_setProd, continuous_nndist, one_le_thickenedIndicator_apply, HasOuterApproxClosed.apprSeq_apply_le_one, BoundedContinuousFunction.self_eq_nnrealPart_sub_nnrealPart_neg, NNReal.dist_gm_am_le, HasOuterApproxClosed.exAppr, NNReal.nndist_zero_eq_val, BoundedContinuousFunction.apply_le_nndist_zero, MeasureTheory.FiniteMeasure.continuous_lintegral_boundedContinuousFunction, BoundedContinuousFunction.NNReal.upper_bound, MeasureTheory.FiniteMeasure.tendsto_iff_forall_toWeakDualBCNN_tendsto, BoundedContinuousFunction.lintegral_le_edist_mul, thickenedIndicator.coeFn_eq_comp, isProperMap_nndist, rieszContentAux_le, MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_lintegral_tendsto, thickenedIndicator_mono, BoundedContinuousFunction.integrable_of_nnreal, NNReal.instCompleteSpace, NNReal.instContinuousStar

Theorems

NameKindAssumesProvesValidatesDepends On
ball_prod_same ๐Ÿ“–mathematicalโ€”SProd.sprod
Set
Set.instSProd
Metric.ball
Prod.pseudoMetricSpaceMax
โ€”Set.ext
closedBall_prod_same ๐Ÿ“–mathematicalโ€”SProd.sprod
Set
Set.instSProd
Metric.closedBall
Prod.pseudoMetricSpaceMax
โ€”Set.ext
continuous_dist ๐Ÿ“–mathematicalโ€”Continuous
Real
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
โ€”UniformContinuous.continuous
uniformContinuous_dist
continuous_iff_continuous_dist ๐Ÿ“–mathematicalโ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
instTopologicalSpaceProd
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
โ€”Continuous.dist
Continuous.fst'
Continuous.snd'
continuous_iff_continuousAt
tendsto_iff_dist_tendsto_zero
Continuous.tendsto'
Continuous.comp
Continuous.prodMk_left
dist_self
continuous_nndist ๐Ÿ“–mathematicalโ€”Continuous
NNReal
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpaceNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
โ€”UniformContinuous.continuous
uniformContinuous_nndist
dist_prod_same_left ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
Prod.pseudoMetricSpaceMax
โ€”dist_self
sup_of_le_right
dist_prod_same_right ๐Ÿ“–mathematicalโ€”Dist.dist
PseudoMetricSpace.toDist
Prod.pseudoMetricSpaceMax
โ€”dist_self
sup_of_le_left
sphere_prod ๐Ÿ“–mathematicalโ€”Metric.sphere
Prod.pseudoMetricSpaceMax
Set
Set.instUnion
SProd.sprod
Set.instSProd
Metric.closedBall
โ€”lt_trichotomy
Metric.sphere_eq_empty_of_neg
Metric.closedBall_of_neg
Set.prod_empty
Set.union_self
Metric.closedBall_eq_sphere_of_nonpos
le_rfl
closedBall_prod_same
Set.ext
uniformContinuous_dist ๐Ÿ“–mathematicalโ€”UniformContinuous
Real
instUniformSpaceProd
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Dist.dist
PseudoMetricSpace.toDist
โ€”Metric.uniformContinuous_iff
Nat.instAtLeastTwoHAddOfNat
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
dist_dist_dist_le
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_max_left
le_max_right
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
add_halves
ZeroLEOneClass.neZero.two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
uniformContinuous_nndist ๐Ÿ“–mathematicalโ€”UniformContinuous
NNReal
instUniformSpaceProd
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpaceNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
โ€”uniformContinuous_dist
dist_nonneg

---

โ† Back to Index