Documentation

Mathlib.Topology.MetricSpace.Pseudo.Constructions

Products of pseudometric spaces and other constructions #

This file constructs the supremum distance on binary products of pseudometric spaces and provides instances for type synonyms.

@[reducible, inline]
abbrev PseudoMetricSpace.induced {α : Type u_3} {β : Type u_4} (f : αβ) (m : PseudoMetricSpace β) :

Pseudometric space structure pulled back by a function.

Equations
    Instances For
      def Topology.IsInducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [TopologicalSpace α] [m : PseudoMetricSpace β] {f : αβ} (hf : IsInducing f) :

      Pull back a pseudometric space structure by an inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a TopologicalSpace structure.

      Equations
        Instances For
          def IsUniformInducing.comapPseudoMetricSpace {α : Type u_3} {β : Type u_4} [UniformSpace α] [m : PseudoMetricSpace β] (f : αβ) (h : IsUniformInducing f) :

          Pull back a pseudometric space structure by a uniform inducing map. This is a version of PseudoMetricSpace.induced useful in case if the domain already has a UniformSpace structure.

          Equations
            Instances For
              theorem Subtype.dist_eq {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (x y : Subtype p) :
              dist x y = dist x y
              theorem Subtype.nndist_eq {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (x y : Subtype p) :
              nndist x y = nndist x y
              @[simp]
              theorem Subtype.preimage_ball {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (a : { a : α // p a }) (r : ) :
              @[simp]
              theorem Subtype.preimage_closedBall {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (a : { a : α // p a }) (r : ) :
              @[simp]
              theorem Subtype.image_ball {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (a : { a : α // p a }) (r : ) :
              val '' Metric.ball a r = Metric.ball (↑a) r {a : α | p a}
              @[simp]
              theorem Subtype.image_closedBall {α : Type u_1} [PseudoMetricSpace α] {p : αProp} (a : { a : α // p a }) (r : ) :
              @[simp]
              theorem MulOpposite.dist_unop {α : Type u_1} [PseudoMetricSpace α] (x y : αᵐᵒᵖ) :
              dist (unop x) (unop y) = dist x y
              @[simp]
              theorem AddOpposite.dist_unop {α : Type u_1} [PseudoMetricSpace α] (x y : αᵃᵒᵖ) :
              dist (unop x) (unop y) = dist x y
              @[simp]
              theorem MulOpposite.dist_op {α : Type u_1} [PseudoMetricSpace α] (x y : α) :
              dist (op x) (op y) = dist x y
              @[simp]
              theorem AddOpposite.dist_op {α : Type u_1} [PseudoMetricSpace α] (x y : α) :
              dist (op x) (op y) = dist x y
              @[simp]
              theorem MulOpposite.nndist_unop {α : Type u_1} [PseudoMetricSpace α] (x y : αᵐᵒᵖ) :
              nndist (unop x) (unop y) = nndist x y
              @[simp]
              theorem AddOpposite.nndist_unop {α : Type u_1} [PseudoMetricSpace α] (x y : αᵃᵒᵖ) :
              nndist (unop x) (unop y) = nndist x y
              @[simp]
              theorem MulOpposite.nndist_op {α : Type u_1} [PseudoMetricSpace α] (x y : α) :
              nndist (op x) (op y) = nndist x y
              @[simp]
              theorem AddOpposite.nndist_op {α : Type u_1} [PseudoMetricSpace α] (x y : α) :
              nndist (op x) (op y) = nndist x y
              theorem NNReal.dist_eq (a b : NNReal) :
              dist a b = |a - b|
              theorem NNReal.nndist_eq (a b : NNReal) :
              nndist a b = max (a - b) (b - a)
              @[simp]
              theorem ULift.dist_up_up {β : Type u_2} [PseudoMetricSpace β] (x y : β) :
              dist { down := x } { down := y } = dist x y
              @[simp]
              theorem ULift.nndist_up_up {β : Type u_2} [PseudoMetricSpace β] (x y : β) :
              nndist { down := x } { down := y } = nndist x y
              theorem Prod.dist_eq {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x y : α × β} :
              dist x y = max (dist x.1 y.1) (dist x.2 y.2)
              @[simp]
              theorem dist_prod_same_left {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x : α} {y₁ y₂ : β} :
              dist (x, y₁) (x, y₂) = dist y₁ y₂
              @[simp]
              theorem dist_prod_same_right {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] {x₁ x₂ : α} {y : β} :
              dist (x₁, y) (x₂, y) = dist x₁ x₂
              theorem ball_prod_same {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [PseudoMetricSpace β] (x : α) (y : β) (r : ) :
              theorem uniformContinuous_dist {α : Type u_1} [PseudoMetricSpace α] :
              UniformContinuous fun (p : α × α) => dist p.1 p.2
              theorem UniformContinuous.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [UniformSpace β] {f g : βα} (hf : UniformContinuous f) (hg : UniformContinuous g) :
              UniformContinuous fun (b : β) => dist (f b) (g b)
              theorem continuous_dist {α : Type u_1} [PseudoMetricSpace α] :
              Continuous fun (p : α × α) => dist p.1 p.2
              theorem Continuous.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f g : βα} (hf : Continuous f) (hg : Continuous g) :
              Continuous fun (b : β) => dist (f b) (g b)
              theorem Filter.Tendsto.dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] {f g : βα} {x : Filter β} {a b : α} (hf : Tendsto f x (nhds a)) (hg : Tendsto g x (nhds b)) :
              Tendsto (fun (x : β) => dist (f x) (g x)) x (nhds (dist a b))
              theorem continuous_iff_continuous_dist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f : βα} :
              Continuous f Continuous fun (x : β × β) => dist (f x.1) (f x.2)
              theorem UniformContinuous.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [UniformSpace β] {f g : βα} (hf : UniformContinuous f) (hg : UniformContinuous g) :
              UniformContinuous fun (b : β) => nndist (f b) (g b)
              theorem continuous_nndist {α : Type u_1} [PseudoMetricSpace α] :
              Continuous fun (p : α × α) => nndist p.1 p.2
              theorem Continuous.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] [TopologicalSpace β] {f g : βα} (hf : Continuous f) (hg : Continuous g) :
              Continuous fun (b : β) => nndist (f b) (g b)
              theorem Filter.Tendsto.nndist {α : Type u_1} {β : Type u_2} [PseudoMetricSpace α] {f g : βα} {x : Filter β} {a b : α} (hf : Tendsto f x (nhds a)) (hg : Tendsto g x (nhds b)) :
              Tendsto (fun (x : β) => nndist (f x) (g x)) x (nhds (nndist a b))