Documentation Verification Report

Lemmas

📁 Source: Mathlib/Topology/MetricSpace/Pseudo/Lemmas.lean

Statistics

MetricCount
Definitions0
TheoremsbiInter_gt_ball, biInter_gt_closedBall, biUnion_lt_ball, biUnion_lt_closedBall, closedBall_zero', closure_ball_subset_closedBall, closure_closedBall, closure_sphere, eventually_isCompact_closedBall, exists_isCompact_closedBall, frontier_ball_subset_sphere, frontier_closedBall_subset_sphere, isClosed_closedBall, isClosed_sphere, singleton_eq_inter_Icc, eventually_ball_subset, eventually_closedBall_subset, instOrderTopologyReal, lebesgue_number_lemma_of_metric, lebesgue_number_lemma_of_metric_sUnion, squeeze_zero, squeeze_zero', tendsto_closedBall_smallSets
23
Total23

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
biInter_gt_ball 📖mathematicalSet.iInter
Real
Real.instLT
ball
closedBall
Set.ext
Set.iInter_congr_Prop
biInter_gt_closedBall 📖mathematicalSet.iInter
Real
Real.instLT
closedBall
Set.ext
Set.iInter_congr_Prop
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
biUnion_lt_ball 📖mathematicalSet.iUnion
Real
Real.instLT
ball
Set.ext
not_iff_not
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
biUnion_lt_closedBall 📖mathematicalSet.iUnion
Real
Real.instLT
closedBall
ball
Set.ext
not_iff_not
closedBall_zero' 📖mathematicalclosedBall
Real
Real.instZero
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instSingletonSet
Set.Subset.antisymm
mem_closure_iff
Set.mem_singleton
LE.le.trans_lt
mem_closedBall
closure_minimal
Set.singleton_subset_iff
Eq.le
dist_self
isClosed_closedBall
closure_ball_subset_closedBall 📖mathematicalSet
Set.instHasSubset
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ball
closedBall
closure_minimal
ball_subset_closedBall
isClosed_closedBall
closure_closedBall 📖mathematicalclosure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closedBall
IsClosed.closure_eq
isClosed_closedBall
closure_sphere 📖mathematicalclosure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
sphere
IsClosed.closure_eq
isClosed_sphere
eventually_isCompact_closedBall 📖mathematicalFilter.Eventually
Real
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closedBall
nhds
Real.pseudoMetricSpace
Real.instZero
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
Filter.mp_mem
eventually_closedBall_subset
Filter.univ_mem'
IsCompact.of_isClosed_subset
isClosed_closedBall
exists_isCompact_closedBall 📖mathematicalReal
Real.instLT
Real.instZero
IsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closedBall
eventually_nhdsWithin_of_eventually_nhds
eventually_isCompact_closedBall
Filter.Eventually.exists
nhdsGT_neBot
instOrderTopologyReal
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.Eventually.and
self_mem_nhdsWithin
frontier_ball_subset_sphere 📖mathematicalSet
Set.instHasSubset
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ball
sphere
frontier_lt_subset_eq
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.dist
continuous_id'
continuous_const
frontier_closedBall_subset_sphere 📖mathematicalSet
Set.instHasSubset
frontier
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closedBall
sphere
frontier_le_subset_eq
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.dist
continuous_id'
continuous_const
isClosed_closedBall 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
closedBall
isClosed_le
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.dist
continuous_id'
continuous_const
isClosed_sphere 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
sphere
isClosed_eq
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Continuous.dist
continuous_id'
continuous_const

Real

Theorems

NameKindAssumesProvesValidatesDepends On
singleton_eq_inter_Icc 📖mathematicalReal
Set
Set.instSingletonSet
Set.iInter
instLT
instZero
Set.Icc
instPreorder
instSub
instAdd
Set.iInter_congr_Prop
Nat.instAtLeastTwoHAddOfNat
Icc_eq_closedBall
sub_add_add_cancel
add_self_div_two
ZeroLEOneClass.neZero.two
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
add_sub_sub_cancel
biInter_basis_nhds
Metric.nhds_basis_closedBall
T2Space.t1Space
OrderClosedTopology.to_t2Space
OrderTopology.to_orderClosedTopology
instOrderTopologyReal

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_ball_subset 📖mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Filter.Eventually
Real
Set.instHasSubset
Metric.ball
Real.pseudoMetricSpace
Real.instZero
Filter.Eventually.mono
eventually_closedBall_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Metric.ball_subset_closedBall
eventually_closedBall_subset 📖mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Filter.Eventually
Real
Set.instHasSubset
Metric.closedBall
Real.pseudoMetricSpace
Real.instZero
Filter.HasBasis.mem_iff
Metric.nhds_basis_closedBall
Iic_mem_nhds
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.mp_mem
Filter.univ_mem'
Set.Subset.trans
Metric.closedBall_subset_closedBall
instOrderTopologyReal 📖mathematicalOrderTopology
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instPreorder
orderTopology_of_nhds_abs
Real.instIsOrderedAddMonoid
Filter.HasBasis.eq_biInf
Metric.nhds_basis_ball
iInf_congr_Prop
abs_sub_comm
lebesgue_number_lemma_of_metric 📖mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
IsOpen
Set
Set.instHasSubset
Set.iUnion
Real
Real.instLT
Real.instZero
Metric.ball
dist_comm
Filter.HasBasis.lebesgue_number_lemma
Metric.uniformity_basis_dist
lebesgue_number_lemma_of_metric_sUnion 📖mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
IsOpen
Set
Set.instHasSubset
Set.sUnion
Real
Real.instLT
Real.instZero
Set.instMembership
Metric.ball
lebesgue_number_lemma_of_metric
Set.sUnion_eq_iUnion
squeeze_zero 📖Real
Real.instLE
Real.instZero
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
squeeze_zero'
Filter.Eventually.of_forall
squeeze_zero' 📖Filter.Eventually
Real
Real.instLE
Real.instZero
Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
tendsto_of_tendsto_of_tendsto_of_le_of_le'
instOrderTopologyReal
tendsto_const_nhds
tendsto_closedBall_smallSets 📖mathematicalFilter.Tendsto
Real
Set
Metric.closedBall
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
Filter.smallSets
Filter.tendsto_smallSets_iff
eventually_closedBall_subset

---

← Back to Index