Extra lemmas about pseudo-metric spaces #
theorem
squeeze_zero'
{α : Type u_3}
{f g : α ā ā}
{tā : Filter α}
(hf : āį¶ (t : α) in tā, 0 ⤠f t)
(hft : āį¶ (t : α) in tā, f t ⤠g t)
(g0 : Filter.Tendsto g tā (nhds 0))
:
Filter.Tendsto f tā (nhds 0)
Special case of the sandwich lemma; see tendsto_of_tendsto_of_tendsto_of_le_of_le' for the
general case.
theorem
squeeze_zero
{α : Type u_3}
{f g : α ā ā}
{tā : Filter α}
(hf : ā (t : α), 0 ⤠f t)
(hft : ā (t : α), f t ⤠g t)
(g0 : Filter.Tendsto g tā (nhds 0))
:
Filter.Tendsto f tā (nhds 0)
Special case of the sandwich lemma; see tendsto_of_tendsto_of_tendsto_of_le_of_le
and tendsto_of_tendsto_of_tendsto_of_le_of_le' for the general case.
theorem
eventually_closedBall_subset
{α : Type u_2}
[PseudoMetricSpace α]
{x : α}
{u : Set α}
(hu : u ā nhds x)
:
If u is a neighborhood of x, then for small enough r, the closed ball
Metric.closedBall x r is contained in u.
theorem
tendsto_closedBall_smallSets
{α : Type u_2}
[PseudoMetricSpace α]
(x : α)
:
Filter.Tendsto (Metric.closedBall x) (nhds 0) (nhds x).smallSets
theorem
eventually_ball_subset
{α : Type u_2}
[PseudoMetricSpace α]
{x : α}
{u : Set α}
(hu : u ā nhds x)
:
If u is a neighborhood of x, then for small enough r, the open ball
Metric.ball x r is contained in u.
theorem
Metric.isClosed_closedBall
{α : Type u_2}
[PseudoMetricSpace α]
{x : α}
{ε : ā}
:
IsClosed (closedBall x ε)
@[simp]
@[simp]
theorem
Metric.closure_ball_subset_closedBall
{α : Type u_2}
[PseudoMetricSpace α]
{x : α}
{ε : ā}
:
theorem
Metric.frontier_ball_subset_sphere
{α : Type u_2}
[PseudoMetricSpace α]
{x : α}
{ε : ā}
:
theorem
Metric.frontier_closedBall_subset_sphere
{α : Type u_2}
[PseudoMetricSpace α]
{x : α}
{ε : ā}
:
theorem
Metric.eventually_isCompact_closedBall
{α : Type u_2}
[PseudoMetricSpace α]
[WeaklyLocallyCompactSpace α]
(x : α)
:
theorem
Metric.exists_isCompact_closedBall
{α : Type u_2}
[PseudoMetricSpace α]
[WeaklyLocallyCompactSpace α]
(x : α)
:
ā (r : ā), 0 < r ā§ IsCompact (closedBall x r)
theorem
lebesgue_number_lemma_of_metric
{α : Type u_2}
[PseudoMetricSpace α]
{s : Set α}
{ι : Sort u_3}
{c : ι ā Set α}
(hs : IsCompact s)
(hcā : ā (i : ι), IsOpen (c i))
(hcā : s ā ā (i : ι), c i)
:
ā Ī“ > 0, ā x ā s, ā (i : ι), Metric.ball x Ī“ ā c i
theorem
lebesgue_number_lemma_of_metric_sUnion
{α : Type u_2}
[PseudoMetricSpace α]
{s : Set α}
{c : Set (Set α)}
(hs : IsCompact s)
(hcā : ā t ā c, IsOpen t)
(hcā : s ā āā c)
:
ā Ī“ > 0, ā x ā s, ā t ā c, Metric.ball x Ī“ ā t