Documentation

Mathlib.Topology.MetricSpace.Pseudo.Lemmas

Extra lemmas about pseudo-metric spaces #

theorem Real.singleton_eq_inter_Icc (b : ā„) :
{b} = ā‹‚ (r : ā„), ā‹‚ (_ : r > 0), Set.Icc (b - r) (b + r)
theorem squeeze_zero' {α : Type u_3} {f g : α → ā„} {tā‚€ : Filter α} (hf : āˆ€į¶  (t : α) in tā‚€, 0 ≤ f t) (hft : āˆ€į¶  (t : α) in tā‚€, f t ≤ g t) (g0 : Filter.Tendsto g tā‚€ (nhds 0)) :
Filter.Tendsto f tā‚€ (nhds 0)

Special case of the sandwich lemma; see tendsto_of_tendsto_of_tendsto_of_le_of_le' for the general case.

theorem squeeze_zero {α : Type u_3} {f g : α → ā„} {tā‚€ : Filter α} (hf : āˆ€ (t : α), 0 ≤ f t) (hft : āˆ€ (t : α), f t ≤ g t) (g0 : Filter.Tendsto g tā‚€ (nhds 0)) :
Filter.Tendsto f tā‚€ (nhds 0)

Special case of the sandwich lemma; see tendsto_of_tendsto_of_tendsto_of_le_of_le and tendsto_of_tendsto_of_tendsto_of_le_of_le' for the general case.

theorem eventually_closedBall_subset {α : Type u_2} [PseudoMetricSpace α] {x : α} {u : Set α} (hu : u ∈ nhds x) :

If u is a neighborhood of x, then for small enough r, the closed ball Metric.closedBall x r is contained in u.

theorem eventually_ball_subset {α : Type u_2} [PseudoMetricSpace α] {x : α} {u : Set α} (hu : u ∈ nhds x) :

If u is a neighborhood of x, then for small enough r, the open ball Metric.ball x r is contained in u.

theorem Metric.isClosed_closedBall {α : Type u_2} [PseudoMetricSpace α] {x : α} {ε : ā„} :
theorem Metric.isClosed_sphere {α : Type u_2} [PseudoMetricSpace α] {x : α} {ε : ā„} :
IsClosed (sphere x ε)
@[simp]
theorem Metric.closure_closedBall {α : Type u_2} [PseudoMetricSpace α] {x : α} {ε : ā„} :
closure (closedBall x ε) = closedBall x ε
@[simp]
theorem Metric.closure_sphere {α : Type u_2} [PseudoMetricSpace α] {x : α} {ε : ā„} :
closure (sphere x ε) = sphere x ε
theorem Metric.frontier_ball_subset_sphere {α : Type u_2} [PseudoMetricSpace α] {x : α} {ε : ā„} :
frontier (ball x ε) āŠ† sphere x ε
theorem Metric.biInter_gt_closedBall {α : Type u_2} [PseudoMetricSpace α] (x : α) (r : ā„) :
ā‹‚ (r' : ā„), ā‹‚ (_ : r' > r), closedBall x r' = closedBall x r
theorem Metric.biInter_gt_ball {α : Type u_2} [PseudoMetricSpace α] (x : α) (r : ā„) :
ā‹‚ (r' : ā„), ā‹‚ (_ : r' > r), ball x r' = closedBall x r
theorem Metric.biUnion_lt_ball {α : Type u_2} [PseudoMetricSpace α] (x : α) (r : ā„) :
ā‹ƒ (r' : ā„), ā‹ƒ (_ : r' < r), ball x r' = ball x r
theorem Metric.biUnion_lt_closedBall {α : Type u_2} [PseudoMetricSpace α] (x : α) (r : ā„) :
ā‹ƒ (r' : ā„), ā‹ƒ (_ : r' < r), closedBall x r' = ball x r
theorem lebesgue_number_lemma_of_metric {α : Type u_2} [PseudoMetricSpace α] {s : Set α} {ι : Sort u_3} {c : ι → Set α} (hs : IsCompact s) (hc₁ : āˆ€ (i : ι), IsOpen (c i)) (hcā‚‚ : s āŠ† ā‹ƒ (i : ι), c i) :
∃ Ī“ > 0, āˆ€ x ∈ s, ∃ (i : ι), Metric.ball x Ī“ āŠ† c i
theorem lebesgue_number_lemma_of_metric_sUnion {α : Type u_2} [PseudoMetricSpace α] {s : Set α} {c : Set (Set α)} (hs : IsCompact s) (hc₁ : āˆ€ t ∈ c, IsOpen t) (hcā‚‚ : s āŠ† ā‹ƒā‚€ c) :
∃ Ī“ > 0, āˆ€ x ∈ s, ∃ t ∈ c, Metric.ball x Ī“ āŠ† t