Documentation Verification Report

Basic

📁 Source: Mathlib/Topology/OpenPartialHomeomorph/Basic.lean

Statistics

MetricCount
DefinitionshomeomorphOfImageSubsetSource, ofContinuousOpen, ofContinuousOpenRestrict, refl, toHomeomorphOfSourceEqUnivTargetEqUniv, toHomeomorphSourceTarget, openPartialHomeomorphSubtypeCoe, partialHomeomorphSubtypeCoe, toOpenPartialHomeomorph, toPartialHomeomorph
10
Theoremscoe_ofContinuousOpen, coe_ofContinuousOpenRestrict, coe_ofContinuousOpenRestrict_symm, coe_ofContinuousOpen_symm, homeomorphOfImageSubsetSource_apply, homeomorphOfImageSubsetSource_symm_apply, image_eq_target_inter_inv_preimage, image_source_eq_target, image_source_inter_eq, image_source_inter_eq', isOpenEmbedding_restrict, isOpen_image_iff_of_subset_source, isOpen_image_of_subset_source, isOpen_image_source_inter, isOpen_image_symm_of_subset_target, isOpen_inter_preimage, isOpen_inter_preimage_symm, isOpen_symm_image_iff_of_subset_target, nhds_eq_comap_inf_principal, ofContinuousOpenRestrict_toPartialEquiv, ofContinuousOpen_toPartialEquiv, refl_apply, refl_partialEquiv, refl_source, refl_symm, refl_target, secondCountableTopology_source, source_inter_preimage_inv_preimage, source_inter_preimage_target_inter, source_preimage_target, symm_image_eq_source_inter_preimage, symm_image_target_eq_source, symm_image_target_inter_eq, target_inter_inv_preimage_preimage, toHomeomorphOfSourceEqUnivTargetEqUniv_apply, toHomeomorphOfSourceEqUnivTargetEqUniv_symm_apply, toHomeomorphSourceTarget_apply_coe, toHomeomorphSourceTarget_symm_apply_coe, to_isOpenEmbedding, openPartialHomeomorphSubtypeCoe_coe, openPartialHomeomorphSubtypeCoe_source, openPartialHomeomorphSubtypeCoe_target, partialHomeomorphSubtypeCoe_coe, partialHomeomorphSubtypeCoe_source, partialHomeomorphSubtypeCoe_target, toOpenPartialHomeomorph_apply, toOpenPartialHomeomorph_left_inv, toOpenPartialHomeomorph_right_inv, toOpenPartialHomeomorph_source, toOpenPartialHomeomorph_target, toPartialHomeomorph_left_inv, toPartialHomeomorph_right_inv
52
Total62

OpenPartialHomeomorph

Definitions

NameCategoryTheorems
homeomorphOfImageSubsetSource 📖CompOp
2 mathmath: homeomorphOfImageSubsetSource_symm_apply, homeomorphOfImageSubsetSource_apply
ofContinuousOpen 📖CompOp
3 mathmath: ofContinuousOpen_toPartialEquiv, coe_ofContinuousOpen_symm, coe_ofContinuousOpen
ofContinuousOpenRestrict 📖CompOp
3 mathmath: coe_ofContinuousOpenRestrict_symm, ofContinuousOpenRestrict_toPartialEquiv, coe_ofContinuousOpenRestrict
refl 📖CompOp
18 mathmath: trans_refl, StructureGroupoid.id_mem', refl_partialEquiv, refl_apply, refl_prod_refl, FiberBundle.chartedSpace_chartAt, refl_symm, Homeomorph.refl_toOpenPartialHomeomorph, refl_source, chartedSpaceSelf_atlas, TangentBundle.chartAt, refl_target, Homeomorph.refl_toPartialHomeomorph, refl_trans, StructureGroupoid.id_mem, ofSet_univ_eq_refl, StructureGroupoid.id_mem_maximalAtlas, chartAt_self_eq
toHomeomorphOfSourceEqUnivTargetEqUniv 📖CompOp
2 mathmath: toHomeomorphOfSourceEqUnivTargetEqUniv_symm_apply, toHomeomorphOfSourceEqUnivTargetEqUniv_apply
toHomeomorphSourceTarget 📖CompOp
4 mathmath: toHomeomorphSourceTarget_apply_coe, StructureGroupoid.restriction_mem_maximalAtlas_subtype, toHomeomorphSourceTarget_symm_apply_coe, Homeomorph.unitBall_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_ofContinuousOpen 📖mathematicalContinuousOn
PartialEquiv.toFun
PartialEquiv.source
IsOpenMap
IsOpen
toFun'
ofContinuousOpen
coe_ofContinuousOpenRestrict 📖mathematicalContinuousOn
PartialEquiv.toFun
PartialEquiv.source
IsOpenMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
IsOpen
toFun'
ofContinuousOpenRestrict
coe_ofContinuousOpenRestrict_symm 📖mathematicalContinuousOn
PartialEquiv.toFun
PartialEquiv.source
IsOpenMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
IsOpen
toFun'
symm
ofContinuousOpenRestrict
PartialEquiv.symm
coe_ofContinuousOpen_symm 📖mathematicalContinuousOn
PartialEquiv.toFun
PartialEquiv.source
IsOpenMap
IsOpen
toFun'
symm
ofContinuousOpen
PartialEquiv.symm
homeomorphOfImageSubsetSource_apply 📖mathematicalSet
Set.instHasSubset
PartialEquiv.source
toPartialEquiv
Set.image
toFun'
DFunLike.coe
Homeomorph
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
EquivLike.toFunLike
Homeomorph.instEquivLike
homeomorphOfImageSubsetSource
Set.MapsTo.restrict
homeomorphOfImageSubsetSource_symm_apply 📖mathematicalSet
Set.instHasSubset
PartialEquiv.source
toPartialEquiv
Set.image
toFun'
DFunLike.coe
Homeomorph
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeomorphOfImageSubsetSource
Set.MapsTo.restrict
symm
image_eq_target_inter_inv_preimage 📖mathematicalSet
Set.instHasSubset
PartialEquiv.source
toPartialEquiv
Set.image
toFun'
Set.instInter
PartialEquiv.target
Set.preimage
symm
PartialEquiv.image_eq_target_inter_inv_preimage
image_source_eq_target 📖mathematicalSet.image
toFun'
PartialEquiv.source
toPartialEquiv
PartialEquiv.target
PartialEquiv.image_source_eq_target
image_source_inter_eq 📖mathematicalSet.image
toFun'
Set
Set.instInter
PartialEquiv.source
toPartialEquiv
PartialEquiv.target
Set.preimage
symm
PartialEquiv.image_source_inter_eq
image_source_inter_eq' 📖mathematicalSet.image
toFun'
Set
Set.instInter
PartialEquiv.source
toPartialEquiv
PartialEquiv.target
Set.preimage
symm
PartialEquiv.image_source_inter_eq'
isOpenEmbedding_restrict 📖mathematicalTopology.IsOpenEmbedding
Set.Elem
PartialEquiv.source
toPartialEquiv
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
toFun'
Topology.IsOpenEmbedding.of_continuous_injective_isOpenMap
ContinuousOn.comp_continuous
continuousOn
continuous_subtype_val
Subtype.prop
Set.InjOn.injective
injOn
Set.restrict_eq
Set.image_comp
isOpen_image_of_subset_source
IsOpen.isOpenMap_subtype_val
open_source
isOpen_image_iff_of_subset_source 📖mathematicalSet
Set.instHasSubset
PartialEquiv.source
toPartialEquiv
IsOpen
Set.image
toFun'
isOpen_symm_image_iff_of_subset_target
symm_symm
isOpen_image_of_subset_source 📖mathematicalIsOpen
Set
Set.instHasSubset
PartialEquiv.source
toPartialEquiv
Set.image
toFun'
image_eq_target_inter_inv_preimage
ContinuousOn.isOpen_inter_preimage
continuousOn_invFun
open_target
isOpen_image_source_inter 📖mathematicalIsOpenSet.image
toFun'
Set
Set.instInter
PartialEquiv.source
toPartialEquiv
isOpen_image_of_subset_source
IsOpen.inter
open_source
Set.inter_subset_left
isOpen_image_symm_of_subset_target 📖mathematicalIsOpen
Set
Set.instHasSubset
PartialEquiv.target
toPartialEquiv
Set.image
toFun'
symm
isOpen_image_of_subset_source
symm_source
isOpen_inter_preimage 📖mathematicalIsOpenSet
Set.instInter
PartialEquiv.source
toPartialEquiv
Set.preimage
toFun'
ContinuousOn.isOpen_inter_preimage
continuousOn
open_source
isOpen_inter_preimage_symm 📖mathematicalIsOpenSet
Set.instInter
PartialEquiv.target
toPartialEquiv
Set.preimage
toFun'
symm
ContinuousOn.isOpen_inter_preimage
continuousOn
open_target
isOpen_symm_image_iff_of_subset_target 📖mathematicalSet
Set.instHasSubset
PartialEquiv.target
toPartialEquiv
IsOpen
Set.image
toFun'
symm
symm_image_eq_source_inter_preimage
Set.inter_subset_left
PartialEquiv.image_symm_image_of_subset_target
isOpen_image_of_subset_source
nhds_eq_comap_inf_principal 📖mathematicalSet
Set.instMembership
PartialEquiv.source
toPartialEquiv
nhds
Filter
Filter.instInf
Filter.comap
toFun'
Filter.principal
CanLift.prf
Subtype.canLift
IsOpen.nhdsWithin_eq
open_source
map_nhds_subtype_val
Filter.map_comap_setCoe_val
Homeomorph.nhds_eq_comap
nhds_subtype_eq_comap
Filter.comap_comap
ofContinuousOpenRestrict_toPartialEquiv 📖mathematicalContinuousOn
PartialEquiv.toFun
PartialEquiv.source
IsOpenMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
IsOpen
toPartialEquiv
ofContinuousOpenRestrict
ofContinuousOpen_toPartialEquiv 📖mathematicalContinuousOn
PartialEquiv.toFun
PartialEquiv.source
IsOpenMap
IsOpen
toPartialEquiv
ofContinuousOpen
refl_apply 📖mathematicaltoFun'
refl
refl_partialEquiv 📖mathematicaltoPartialEquiv
refl
PartialEquiv.refl
refl_source 📖mathematicalPartialEquiv.source
toPartialEquiv
refl
Set.univ
refl_symm 📖mathematicalsymm
refl
refl_target 📖mathematicalPartialEquiv.target
toPartialEquiv
refl
Set.univ
secondCountableTopology_source 📖mathematicalSecondCountableTopology
Set.Elem
PartialEquiv.source
toPartialEquiv
instTopologicalSpaceSubtype
Set
Set.instMembership
Homeomorph.secondCountableTopology
TopologicalSpace.Subtype.secondCountableTopology
source_inter_preimage_inv_preimage 📖mathematicalSet
Set.instInter
PartialEquiv.source
toPartialEquiv
Set.preimage
toFun'
symm
PartialEquiv.source_inter_preimage_inv_preimage
source_inter_preimage_target_inter 📖mathematicalSet
Set.instInter
PartialEquiv.source
toPartialEquiv
Set.preimage
toFun'
PartialEquiv.target
PartialEquiv.source_inter_preimage_target_inter
source_preimage_target 📖mathematicalSet
Set.instHasSubset
PartialEquiv.source
toPartialEquiv
Set.preimage
toFun'
PartialEquiv.target
mapsTo
symm_image_eq_source_inter_preimage 📖mathematicalSet
Set.instHasSubset
PartialEquiv.target
toPartialEquiv
Set.image
toFun'
symm
Set.instInter
PartialEquiv.source
Set.preimage
image_eq_target_inter_inv_preimage
symm_image_target_eq_source 📖mathematicalSet.image
toFun'
symm
PartialEquiv.target
toPartialEquiv
PartialEquiv.source
image_source_eq_target
symm_image_target_inter_eq 📖mathematicalSet.image
toFun'
symm
Set
Set.instInter
PartialEquiv.target
toPartialEquiv
PartialEquiv.source
Set.preimage
image_source_inter_eq
target_inter_inv_preimage_preimage 📖mathematicalSet
Set.instInter
PartialEquiv.target
toPartialEquiv
Set.preimage
toFun'
symm
source_inter_preimage_inv_preimage
toHomeomorphOfSourceEqUnivTargetEqUniv_apply 📖mathematicalPartialEquiv.source
toPartialEquiv
Set.univ
PartialEquiv.target
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorphOfSourceEqUnivTargetEqUniv
toFun'
toHomeomorphOfSourceEqUnivTargetEqUniv_symm_apply 📖mathematicalPartialEquiv.source
toPartialEquiv
Set.univ
PartialEquiv.target
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorphOfSourceEqUnivTargetEqUniv
toFun'
symm
toHomeomorphSourceTarget_apply_coe 📖mathematicalSet
Set.instMembership
PartialEquiv.target
toPartialEquiv
DFunLike.coe
Homeomorph
Set.Elem
PartialEquiv.source
instTopologicalSpaceSubtype
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorphSourceTarget
toFun'
toHomeomorphSourceTarget_symm_apply_coe 📖mathematicalSet
Set.instMembership
PartialEquiv.source
toPartialEquiv
DFunLike.coe
Homeomorph
Set.Elem
PartialEquiv.target
instTopologicalSpaceSubtype
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorphSourceTarget
toFun'
symm
to_isOpenEmbedding 📖mathematicalPartialEquiv.source
toPartialEquiv
Set.univ
Topology.IsOpenEmbedding
toFun'
Topology.IsOpenEmbedding.comp
isOpenEmbedding_restrict
Homeomorph.isOpenEmbedding

TopologicalSpace.Opens

Definitions

NameCategoryTheorems
openPartialHomeomorphSubtypeCoe 📖CompOp
7 mathmath: partialHomeomorphSubtypeCoe_target, openPartialHomeomorphSubtypeCoe_coe, partialHomeomorphSubtypeCoe_coe, openPartialHomeomorphSubtypeCoe_target, openPartialHomeomorphSubtypeCoe_source, OpenPartialHomeomorph.subtypeRestr_def, partialHomeomorphSubtypeCoe_source
partialHomeomorphSubtypeCoe 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
openPartialHomeomorphSubtypeCoe_coe 📖mathematicalOpenPartialHomeomorph.toFun'
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
openPartialHomeomorphSubtypeCoe
openPartialHomeomorphSubtypeCoe_source 📖mathematicalPartialEquiv.source
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceSubtype
openPartialHomeomorphSubtypeCoe
Set.univ
openPartialHomeomorphSubtypeCoe_target 📖mathematicalPartialEquiv.target
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceSubtype
openPartialHomeomorphSubtypeCoe
SetLike.coe
Topology.IsOpenEmbedding.toOpenPartialHomeomorph_target
Subtype.range_coe_subtype
partialHomeomorphSubtypeCoe_coe 📖mathematicalOpenPartialHomeomorph.toFun'
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
openPartialHomeomorphSubtypeCoe
openPartialHomeomorphSubtypeCoe_coe
partialHomeomorphSubtypeCoe_source 📖mathematicalPartialEquiv.source
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceSubtype
openPartialHomeomorphSubtypeCoe
Set.univ
openPartialHomeomorphSubtypeCoe_source
partialHomeomorphSubtypeCoe_target 📖mathematicalPartialEquiv.target
TopologicalSpace.Opens
SetLike.instMembership
instSetLike
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceSubtype
openPartialHomeomorphSubtypeCoe
SetLike.coe
openPartialHomeomorphSubtypeCoe_target

Topology.IsOpenEmbedding

Definitions

NameCategoryTheorems
toOpenPartialHomeomorph 📖CompOp
8 mathmath: toOpenPartialHomeomorph_source, contMDiffOn_isOpenEmbedding_symm, toOpenPartialHomeomorph_apply, toPartialHomeomorph_left_inv, toOpenPartialHomeomorph_target, toOpenPartialHomeomorph_right_inv, toPartialHomeomorph_right_inv, toOpenPartialHomeomorph_left_inv
toPartialHomeomorph 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
toOpenPartialHomeomorph_apply 📖mathematicalTopology.IsOpenEmbeddingOpenPartialHomeomorph.toFun'
toOpenPartialHomeomorph
toOpenPartialHomeomorph_left_inv 📖mathematicalTopology.IsOpenEmbeddingOpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
toOpenPartialHomeomorph
toOpenPartialHomeomorph_apply
OpenPartialHomeomorph.left_inv
Set.mem_univ
toOpenPartialHomeomorph_right_inv 📖mathematicalTopology.IsOpenEmbedding
Set
Set.instMembership
Set.range
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
toOpenPartialHomeomorph
toOpenPartialHomeomorph_apply
OpenPartialHomeomorph.right_inv
toOpenPartialHomeomorph_target
toOpenPartialHomeomorph_source 📖mathematicalTopology.IsOpenEmbeddingPartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
toOpenPartialHomeomorph
Set.univ
toOpenPartialHomeomorph_target 📖mathematicalTopology.IsOpenEmbeddingPartialEquiv.target
OpenPartialHomeomorph.toPartialEquiv
toOpenPartialHomeomorph
Set.range
Set.image_univ
toPartialHomeomorph_left_inv 📖mathematicalTopology.IsOpenEmbeddingOpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
toOpenPartialHomeomorph
toOpenPartialHomeomorph_left_inv
toPartialHomeomorph_right_inv 📖mathematicalTopology.IsOpenEmbedding
Set
Set.instMembership
Set.range
OpenPartialHomeomorph.toFun'
OpenPartialHomeomorph.symm
toOpenPartialHomeomorph
toOpenPartialHomeomorph_right_inv

---

← Back to Index