Documentation

Mathlib.Topology.OpenPartialHomeomorph.Basic

Partial homeomorphisms: basic theory #

Main definitions #

The identity on the whole space as an open partial homeomorphism.

Equations
    Instances For
      theorem OpenPartialHomeomorph.isOpen_image_of_subset_source {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {s : Set X} (hs : IsOpen s) (hse : s โІ e.source) :
      IsOpen (โ†‘e '' s)

      An open partial homeomorphism is an open map on its source: the image of an open subset of the source is open.

      The image of the restriction of an open set to the source is open.

      theorem OpenPartialHomeomorph.isOpen_image_symm_of_subset_target {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {t : Set Y} (ht : IsOpen t) (hte : t โІ e.target) :
      IsOpen (โ†‘e.symm '' t)

      The inverse of an open partial homeomorphism e is an open map on e.target.

      A PartialEquiv with continuous open forward map and open source is a OpenPartialHomeomorph.

      Equations
        Instances For
          @[simp]
          theorem OpenPartialHomeomorph.coe_ofContinuousOpenRestrict {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : PartialEquiv X Y) (hc : ContinuousOn (โ†‘e) e.source) (ho : IsOpenMap (e.source.restrict โ†‘e)) (hs : IsOpen e.source) :
          โ†‘(ofContinuousOpenRestrict e hc ho hs) = โ†‘e
          @[simp]
          theorem OpenPartialHomeomorph.coe_ofContinuousOpenRestrict_symm {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : PartialEquiv X Y) (hc : ContinuousOn (โ†‘e) e.source) (ho : IsOpenMap (e.source.restrict โ†‘e)) (hs : IsOpen e.source) :
          โ†‘(ofContinuousOpenRestrict e hc ho hs).symm = โ†‘e.symm
          def OpenPartialHomeomorph.ofContinuousOpen {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : PartialEquiv X Y) (hc : ContinuousOn (โ†‘e) e.source) (ho : IsOpenMap โ†‘e) (hs : IsOpen e.source) :

          A PartialEquiv with continuous open forward map and open source is a OpenPartialHomeomorph.

          Equations
            Instances For
              @[simp]
              theorem OpenPartialHomeomorph.coe_ofContinuousOpen {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : PartialEquiv X Y) (hc : ContinuousOn (โ†‘e) e.source) (ho : IsOpenMap โ†‘e) (hs : IsOpen e.source) :
              โ†‘(ofContinuousOpen e hc ho hs) = โ†‘e
              @[simp]
              theorem OpenPartialHomeomorph.coe_ofContinuousOpen_symm {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : PartialEquiv X Y) (hc : ContinuousOn (โ†‘e) e.source) (ho : IsOpenMap โ†‘e) (hs : IsOpen e.source) :
              โ†‘(ofContinuousOpen e hc ho hs).symm = โ†‘e.symm
              def OpenPartialHomeomorph.homeomorphOfImageSubsetSource {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {s : Set X} {t : Set Y} (hs : s โІ e.source) (ht : โ†‘e '' s = t) :
              โ†‘s โ‰ƒโ‚œ โ†‘t

              The homeomorphism obtained by restricting an OpenPartialHomeomorph to a subset of the source.

              Equations
                Instances For
                  @[simp]
                  theorem OpenPartialHomeomorph.homeomorphOfImageSubsetSource_symm_apply {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {s : Set X} {t : Set Y} (hs : s โІ e.source) (ht : โ†‘e '' s = t) (aโœ : โ†‘t) :
                  (e.homeomorphOfImageSubsetSource hs ht).symm aโœ = Set.MapsTo.restrict (โ†‘e.symm) t s โ‹ฏ aโœ
                  @[simp]
                  theorem OpenPartialHomeomorph.homeomorphOfImageSubsetSource_apply {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) {s : Set X} {t : Set Y} (hs : s โІ e.source) (ht : โ†‘e '' s = t) (aโœ : โ†‘s) :
                  (e.homeomorphOfImageSubsetSource hs ht) aโœ = Set.MapsTo.restrict (โ†‘e) s t โ‹ฏ aโœ

                  An open partial homeomorphism defines a homeomorphism between its source and target.

                  Equations
                    Instances For
                      @[simp]
                      theorem OpenPartialHomeomorph.toHomeomorphSourceTarget_symm_apply_coe {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) (aโœ : โ†‘e.target) :
                      โ†‘(e.toHomeomorphSourceTarget.symm aโœ) = โ†‘e.symm โ†‘aโœ
                      @[simp]
                      theorem OpenPartialHomeomorph.toHomeomorphSourceTarget_apply_coe {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (e : OpenPartialHomeomorph X Y) (aโœ : โ†‘e.source) :
                      โ†‘(e.toHomeomorphSourceTarget aโœ) = โ†‘e โ†‘aโœ

                      If an open partial homeomorphism has source and target equal to univ, then it induces a homeomorphism between the whole spaces, expressed in this definition.

                      Equations
                        Instances For

                          An open partial homeomorphism whose source is all of X defines an open embedding of X into Y. The converse is also true; see IsOpenEmbedding.toOpenPartialHomeomorph.

                          Open embeddings #

                          noncomputable def Topology.IsOpenEmbedding.toOpenPartialHomeomorph {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : X โ†’ Y) (h : IsOpenEmbedding f) [Nonempty X] :

                          An open embedding of X into Y, with X nonempty, defines an open partial homeomorphism whose source is all of X. The converse is also true; see OpenPartialHomeomorph.to_isOpenEmbedding.

                          Equations
                            Instances For
                              @[deprecated Topology.IsOpenEmbedding.toOpenPartialHomeomorph (since := "2025-08-29")]

                              Alias of Topology.IsOpenEmbedding.toOpenPartialHomeomorph.


                              An open embedding of X into Y, with X nonempty, defines an open partial homeomorphism whose source is all of X. The converse is also true; see OpenPartialHomeomorph.to_isOpenEmbedding.

                              Equations
                                Instances For
                                  @[deprecated Topology.IsOpenEmbedding.toOpenPartialHomeomorph_left_inv (since := "2025-08-29")]
                                  theorem Topology.IsOpenEmbedding.toPartialHomeomorph_left_inv {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : X โ†’ Y) (h : IsOpenEmbedding f) [Nonempty X] {x : X} :
                                  โ†‘(toOpenPartialHomeomorph f h).symm (f x) = x

                                  Alias of Topology.IsOpenEmbedding.toOpenPartialHomeomorph_left_inv.

                                  @[deprecated Topology.IsOpenEmbedding.toOpenPartialHomeomorph_right_inv (since := "2025-08-29")]
                                  theorem Topology.IsOpenEmbedding.toPartialHomeomorph_right_inv {X : Type u_1} {Y : Type u_3} [TopologicalSpace X] [TopologicalSpace Y] (f : X โ†’ Y) (h : IsOpenEmbedding f) [Nonempty X] {x : Y} (hx : x โˆˆ Set.range f) :
                                  f (โ†‘(toOpenPartialHomeomorph f h).symm x) = x

                                  Alias of Topology.IsOpenEmbedding.toOpenPartialHomeomorph_right_inv.

                                  inclusion of an open set in a topological space

                                  noncomputable def TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe {X : Type u_1} [TopologicalSpace X] (s : Opens X) (hs : Nonempty โ†ฅs) :
                                  OpenPartialHomeomorph (โ†ฅs) X

                                  The inclusion of an open subset s of a space X into X is an open partial homeomorphism from the subtype s to X.

                                  Equations
                                    Instances For
                                      @[deprecated TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe (since := "2025-08-29")]

                                      Alias of TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe.


                                      The inclusion of an open subset s of a space X into X is an open partial homeomorphism from the subtype s to X.

                                      Equations
                                        Instances For
                                          @[deprecated TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe_coe (since := "2025-08-29")]

                                          Alias of TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe_coe.

                                          @[deprecated TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe_source (since := "2025-08-29")]

                                          Alias of TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe_source.

                                          @[deprecated TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe_target (since := "2025-08-29")]

                                          Alias of TopologicalSpace.Opens.openPartialHomeomorphSubtypeCoe_target.