Documentation Verification Report

SeparatedNhds

πŸ“ Source: Mathlib/Topology/Separation/SeparatedNhds.lean

Statistics

MetricCount
DefinitionsHasSeparatingCover, SeparatedNhds
2
Theoremsmono, comm, disjoint, disjoint_closure_left, disjoint_closure_right, disjoint_nhdsSet, empty_left, empty_right, isClosed_left_of_isClosed_union, isClosed_right_of_isClosed_union, isClosed_union_iff, isOpen_left_of_isOpen_union, isOpen_right_of_isOpen_union, isOpen_union_iff, mono, preimage, union_left, union_right, hasSeparatingCover_empty_left, hasSeparatingCover_empty_right, hasSeparatingCovers_iff_separatedNhds, separatedNhds_iff_disjoint
22
Total24

HasSeparatingCover

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–β€”HasSeparatingCover
Set
Set.instHasSubset
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.disjoint_of_subset

SeparatedNhds

Theorems

NameKindAssumesProvesValidatesDepends On
comm πŸ“–mathematicalβ€”SeparatedNhdsβ€”symm
disjoint πŸ“–mathematicalSeparatedNhdsDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Disjoint.mono
disjoint_closure_left πŸ“–mathematicalSeparatedNhdsDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
β€”Disjoint.mono
closure_mono
Disjoint.closure_left
disjoint_closure_right πŸ“–mathematicalSeparatedNhdsDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
β€”Disjoint.symm
disjoint_closure_left
symm
disjoint_nhdsSet πŸ“–mathematicalSeparatedNhdsDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
β€”separatedNhds_iff_disjoint
empty_left πŸ“–mathematicalβ€”SeparatedNhds
Set
Set.instEmptyCollection
β€”symm
empty_right
empty_right πŸ“–mathematicalβ€”SeparatedNhds
Set
Set.instEmptyCollection
β€”isOpen_univ
isOpen_empty
Set.mem_univ
Set.Subset.rfl
Set.disjoint_empty
isClosed_left_of_isClosed_union πŸ“–mathematicalSeparatedNhdsIsClosedβ€”isOpen_compl_iff
compl_inj_iff
Set.compl_union
compl_compl
Set.union_inter_distrib_right
Disjoint.inter_eq
Disjoint.mono_left
disjoint_compl_right
Set.union_empty
Set.left_eq_inter
Set.subset_compl_comm
Disjoint.subset_compl_left
IsOpen.union
isClosed_right_of_isClosed_union πŸ“–mathematicalSeparatedNhdsIsClosedβ€”isClosed_left_of_isClosed_union
symm
Set.union_comm
isClosed_union_iff πŸ“–mathematicalSeparatedNhdsIsClosed
Set
Set.instUnion
β€”isClosed_left_of_isClosed_union
isClosed_right_of_isClosed_union
IsClosed.union
isOpen_left_of_isOpen_union πŸ“–β€”SeparatedNhds
IsOpen
Set
Set.instUnion
β€”β€”Set.union_inter_distrib_right
Disjoint.inter_eq
Disjoint.mono_left
Disjoint.symm
Set.union_empty
Set.inter_eq_left
IsOpen.inter
isOpen_right_of_isOpen_union πŸ“–β€”SeparatedNhds
IsOpen
Set
Set.instUnion
β€”β€”isOpen_left_of_isOpen_union
symm
Set.union_comm
isOpen_union_iff πŸ“–mathematicalSeparatedNhdsIsOpen
Set
Set.instUnion
β€”isOpen_left_of_isOpen_union
isOpen_right_of_isOpen_union
IsOpen.union
mono πŸ“–β€”SeparatedNhds
Set
Set.instHasSubset
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset
preimage πŸ“–mathematicalSeparatedNhds
Continuous
Set.preimageβ€”IsOpen.preimage
Set.preimage_mono
Disjoint.preimage
union_left πŸ“–mathematicalSeparatedNhdsSet
Set.instUnion
β€”nhdsSet_union
union_right πŸ“–mathematicalSeparatedNhdsSet
Set.instUnion
β€”symm
union_left

Set

Theorems

NameKindAssumesProvesValidatesDepends On
hasSeparatingCover_empty_left πŸ“–mathematicalβ€”HasSeparatingCover
Set
instEmptyCollection
β€”empty_subset
isOpen_empty
closure_empty
hasSeparatingCover_empty_right πŸ“–mathematicalβ€”HasSeparatingCover
Set
instEmptyCollection
β€”HasSubset.Subset.trans
instIsTransSubset
subset_univ
Eq.subset
instReflSubset
iUnion_const
isOpen_univ
disjoint_empty

(root)

Definitions

NameCategoryTheorems
HasSeparatingCover πŸ“–MathDef
5 mathmath: Set.hasSeparatingCover_empty_left, hasSeparatingCovers_iff_separatedNhds, Disjoint.hasSeparatingCover_closed_gdelta_right, IsClosed.HasSeparatingCover, Set.hasSeparatingCover_empty_right
SeparatedNhds πŸ“–MathDef
13 mathmath: SeparatedNhds.of_isCompact_isClosed, SeparatedNhds.comm, normal_separation, SeparatedNhds.of_isClosed_isCompact_closure_compl_isClosed, SeparatedNhds.of_finset_finset, hasSeparatingCovers_iff_separatedNhds, separatedNhds_iff_disjoint, NormalSpace.normal, SeparatedNhds.empty_right, SeparatedNhds.of_isCompact_isCompact_isClosed, SeparatedNhds.empty_left, SeparatedNhds.of_isCompact_isCompact, SeparatedNhds.of_singleton_finset

Theorems

NameKindAssumesProvesValidatesDepends On
hasSeparatingCovers_iff_separatedNhds πŸ“–mathematicalβ€”HasSeparatingCover
SeparatedNhds
β€”isOpen_iUnion
IsOpen.sdiff
isClosed_closure
closure_iUnionβ‚‚_le_nat
Set.disjoint_left
subset_closure
Set.mem_biUnion
le_of_lt
not_le
HasSubset.Subset.trans
Set.instIsTransSubset
Eq.subset
Set.instReflSubset
Set.iUnion_const
Set.disjoint_of_subset
Disjoint.closure_left
Disjoint.symm
Disjoint.closure_right
separatedNhds_iff_disjoint πŸ“–mathematicalβ€”SeparatedNhds
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
β€”Filter.HasBasis.disjoint_iff
hasBasis_nhdsSet

---

← Back to Index