Separated neighbourhoods #
This file defines the predicates SeparatedNhds and HasSeparatingCover, which are used in
formulating separation axioms for topological spaces.
Main definitions #
SeparatedNhds: TwoSets are separated by neighbourhoods if they are contained in disjoint open sets.HasSeparatingCover: A set has a countable cover that can be used withhasSeparatingCovers_iff_separatedNhdsto witness when twoSets haveSeparatedNhds.
References #
- https://en.wikipedia.org/wiki/Separation_axiom
- [Willard's General Topology][zbMATH02107988]
SeparatedNhds is a predicate on pairs of subSets of a topological space. It holds if the two
subSets are contained in disjoint open sets.
Equations
Instances For
theorem
SeparatedNhds.disjoint_nhdsSet
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
:
SeparatedNhds s t β Disjoint (nhdsSet s) (nhdsSet t)
Alias of the forward direction of separatedNhds_iff_disjoint.
Used to prove that a regular topological space with LindelΓΆf topology is a normal space, and a perfectly normal space is a completely normal space.
theorem
HasSeparatingCover.mono
{X : Type u_1}
[TopologicalSpace X]
{sβ sβ tβ tβ : Set X}
(sc_st : HasSeparatingCover sβ tβ)
(s_sub : sβ β sβ)
(t_sub : tβ β tβ)
:
HasSeparatingCover sβ tβ
theorem
SeparatedNhds.symm
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
:
SeparatedNhds s t β SeparatedNhds t s
theorem
SeparatedNhds.preimage
{X : Type u_1}
{Y : Type u_2}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X β Y}
{s t : Set Y}
(h : SeparatedNhds s t)
(hf : Continuous f)
:
SeparatedNhds (f β»ΒΉ' s) (f β»ΒΉ' t)
theorem
SeparatedNhds.disjoint
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(h : SeparatedNhds s t)
:
Disjoint s t
theorem
SeparatedNhds.disjoint_closure_left
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(h : SeparatedNhds s t)
:
theorem
SeparatedNhds.disjoint_closure_right
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(h : SeparatedNhds s t)
:
@[simp]
@[simp]
theorem
SeparatedNhds.mono
{X : Type u_1}
[TopologicalSpace X]
{sβ sβ tβ tβ : Set X}
(h : SeparatedNhds sβ tβ)
(hs : sβ β sβ)
(ht : tβ β tβ)
:
SeparatedNhds sβ tβ
theorem
SeparatedNhds.union_left
{X : Type u_1}
[TopologicalSpace X]
{s t u : Set X}
:
SeparatedNhds s u β SeparatedNhds t u β SeparatedNhds (s βͺ t) u
theorem
SeparatedNhds.union_right
{X : Type u_1}
[TopologicalSpace X]
{s t u : Set X}
(ht : SeparatedNhds s t)
(hu : SeparatedNhds s u)
:
SeparatedNhds s (t βͺ u)
theorem
SeparatedNhds.isOpen_left_of_isOpen_union
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(hst : SeparatedNhds s t)
(hst' : IsOpen (s βͺ t))
:
IsOpen s
theorem
SeparatedNhds.isOpen_right_of_isOpen_union
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(hst : SeparatedNhds s t)
(hst' : IsOpen (s βͺ t))
:
IsOpen t
theorem
SeparatedNhds.isOpen_union_iff
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(hst : SeparatedNhds s t)
:
theorem
SeparatedNhds.isClosed_left_of_isClosed_union
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(hst : SeparatedNhds s t)
(hst' : IsClosed (s βͺ t))
:
IsClosed s
theorem
SeparatedNhds.isClosed_right_of_isClosed_union
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(hst : SeparatedNhds s t)
(hst' : IsClosed (s βͺ t))
:
IsClosed t
theorem
SeparatedNhds.isClosed_union_iff
{X : Type u_1}
[TopologicalSpace X]
{s t : Set X}
(hst : SeparatedNhds s t)
: