Documentation

Mathlib.Topology.Separation.SeparatedNhds

Separated neighbourhoods #

This file defines the predicates SeparatedNhds and HasSeparatingCover, which are used in formulating separation axioms for topological spaces.

Main definitions #

References #

def SeparatedNhds {X : Type u_1} [TopologicalSpace X] :
Set X β†’ Set X β†’ Prop

SeparatedNhds is a predicate on pairs of subSets of a topological space. It holds if the two subSets are contained in disjoint open sets.

Equations
    Instances For
      theorem SeparatedNhds.disjoint_nhdsSet {X : Type u_1} [TopologicalSpace X] {s t : Set X} :

      Alias of the forward direction of separatedNhds_iff_disjoint.

      def HasSeparatingCover {X : Type u_1} [TopologicalSpace X] :
      Set X β†’ Set X β†’ Prop

      HasSeparatingCovers can be useful witnesses for SeparatedNhds.

      Equations
        Instances For

          Used to prove that a regular topological space with LindelΓΆf topology is a normal space, and a perfectly normal space is a completely normal space.

          theorem HasSeparatingCover.mono {X : Type u_1} [TopologicalSpace X] {s₁ sβ‚‚ t₁ tβ‚‚ : Set X} (sc_st : HasSeparatingCover sβ‚‚ tβ‚‚) (s_sub : s₁ βŠ† sβ‚‚) (t_sub : t₁ βŠ† tβ‚‚) :
          HasSeparatingCover s₁ t₁
          theorem SeparatedNhds.symm {X : Type u_1} [TopologicalSpace X] {s t : Set X} :
          theorem SeparatedNhds.preimage {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] {f : X β†’ Y} {s t : Set Y} (h : SeparatedNhds s t) (hf : Continuous f) :
          theorem SeparatedNhds.mono {X : Type u_1} [TopologicalSpace X] {s₁ sβ‚‚ t₁ tβ‚‚ : Set X} (h : SeparatedNhds sβ‚‚ tβ‚‚) (hs : s₁ βŠ† sβ‚‚) (ht : t₁ βŠ† tβ‚‚) :
          SeparatedNhds s₁ t₁
          theorem SeparatedNhds.isOpen_left_of_isOpen_union {X : Type u_1} [TopologicalSpace X] {s t : Set X} (hst : SeparatedNhds s t) (hst' : IsOpen (s βˆͺ t)) :
          theorem SeparatedNhds.isOpen_right_of_isOpen_union {X : Type u_1} [TopologicalSpace X] {s t : Set X} (hst : SeparatedNhds s t) (hst' : IsOpen (s βˆͺ t)) :