Documentation Verification Report

Closeds

πŸ“ Source: Mathlib/Topology/Sets/Closeds.lean

Statistics

MetricCount
DefinitionsClopens, carrier, instBooleanAlgebra, instBot, instCompl, instHImp, instInhabited, instMax, instMin, instPartialOrder, instSDiff, instSProdProd, instSetLike, instTop, toCloseds, toOpens, carrier, closure, coframeMinimalAxioms, compl, complOrderIso, gi, instCoframe, instCompleteLattice, instInhabited, instPartialOrder, instSetLike, instSingletonOfT1Space, preimage, singleton, IrreducibleCloseds, carrier, equivSubtype, equivSubtype', instPartialOrder, instSetLike, instSingletonOfT1Space, map, orderIsoSubtype, orderIsoSubtype', singleton, compl, complOrderIso
43
Theoremscoe_bot, coe_compl, coe_disjoint, coe_finset_sup, coe_himp, coe_inf, coe_mk, coe_sdiff, coe_sup, coe_toCloseds, coe_toOpens, coe_top, ext, ext_iff, isClopen, isClopen', isClosed, isOpen, mem_mk, mem_prod, carrier_eq_coe, closure_le, coe_bot, coe_closure, coe_compl, coe_eq_empty, coe_eq_singleton_of_isAtom, coe_eq_univ, coe_finset_inf, coe_finset_sup, coe_iInf, coe_inf, coe_mk, coe_nonempty, coe_preimage, coe_sInf, coe_sSup, coe_singleton, coe_sup, coe_top, complOrderIso_apply, complOrderIso_symm_apply, compl_bijective, compl_compl, ext, ext_iff, gc, iInf_def, iInf_mk, instCanLiftSetCoeIsClosed, isAtom_coe, isAtom_iff, isClosed, isClosed', mem_closure, mem_iInf, mem_mk, mem_sInf, mem_singleton, mk_singleton, singleton_inj, singleton_injective, coe_map, coe_mk, coe_singleton, equivSubtype'_apply, equivSubtype'_symm_apply, equivSubtype_apply, equivSubtype_symm_apply, ext, ext_iff, instCanLiftSetCoeAndIsIrreducibleIsClosed, isClosed, isClosed', isIrreducible, isIrreducible', is_closed', is_irreducible', map_injective_of_isInducing, map_mono, map_strictMono_of_isInducing, mem_singleton, mk_singleton, singleton_inj, singleton_injective, coe_compl, complOrderIso_apply, complOrderIso_symm_apply, compl_bijective, compl_compl, isCoatom_iff
91
Total134

TopologicalSpace

Definitions

NameCategoryTheorems
Clopens πŸ“–CompData
43 mathmath: Clopens.coe_mk, Clopens.coe_bot, LightProfinite.instCountableClopensCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, Clopens.ext_iff, DiscreteQuotient.finsetClopens_inj, CompactOpens.coe_toClopens, PrimeSpectrum.isIdempotentElemEquivClopens_symm_bot, PrimeSpectrum.isIdempotentElemEquivClopens_one_sub, Clopens.coe_disjoint, ClopenUpperSet.coe_mk, Clopens.isClopen, PrimeSpectrum.isIdempotentElemEquivClopens_symm_inf, Clopens.finite_prod, Clopens.coe_sdiff, ContinuousMap.exists_finite_sum_const_indicator_approximation_of_mem_nhds_diagonal, Clopens.coe_top, Clopens.exists_finset_eq_sup_prod, Clopens.coe_inf, DiscreteQuotient.comp_finsetClopens, Clopens.mem_mk, PrimeSpectrum.isIdempotentElemEquivClopens_symm_sup, Clopens.isOpen, Clopens.coe_sup, ContinuousMap.exists_finite_sum_const_mulIndicator_approximation_of_mem_nhds_diagonal, Clopens.coe_compl, PrimeSpectrum.isIdempotentElemEquivClopens_apply_toOpens, PrimeSpectrum.basicOpen_isIdempotentElemEquivClopens_symm, Clopens.isClosed, Clopens.surjective_finset_sup_prod, Clopens.coe_himp, Clopens.coe_finset_sup, Clopens.coe_toCloseds, PrimeSpectrum.isIdempotentElemEquivClopens_symm_top, Clopens.coe_toOpens, Clopens.countable_prod, Clopens.countable_iff_secondCountable, IsOpenCover.exists_finite_clopen_cover, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, Clopens.mem_prod, PrimeSpectrum.isIdempotentElemEquivClopens_mul, PrimeSpectrum.coe_isIdempotentElemEquivClopens_apply, PrimeSpectrum.isIdempotentElemEquivClopens_symm_compl, IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover
IrreducibleCloseds πŸ“–CompData
20 mathmath: IrreducibleCloseds.coe_mk, IrreducibleCloseds.map_strictMono_of_isInducing, IrreducibleCloseds.singleton_inj, IrreducibleCloseds.instCanLiftSetCoeAndIsIrreducibleIsClosed, IrreducibleCloseds.singleton_injective, IrreducibleCloseds.is_irreducible', IrreducibleCloseds.isIrreducible, IrreducibleCloseds.isClosed, IrreducibleCloseds.is_closed', IrreducibleCloseds.coe_singleton, IrreducibleCloseds.equivSubtype_apply, IrreducibleCloseds.mem_singleton, IrreducibleCloseds.map_injective_of_isInducing, IrreducibleCloseds.map_mono, IrreducibleCloseds.ext_iff, IrreducibleCloseds.equivSubtype'_apply, IrreducibleCloseds.coe_map, IrreducibleCloseds.equivSubtype_symm_apply, IrreducibleCloseds.mk_singleton, IrreducibleCloseds.equivSubtype'_symm_apply

TopologicalSpace.Clopens

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
3 mathmath: DiscreteQuotient.comp_finsetClopens, isClopen', ClopenUpperSet.upper'
instBooleanAlgebra πŸ“–CompOp
6 mathmath: coe_disjoint, exists_finset_eq_sup_prod, surjective_finset_sup_prod, coe_finset_sup, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover
instBot πŸ“–CompOp
2 mathmath: coe_bot, PrimeSpectrum.isIdempotentElemEquivClopens_symm_bot
instCompl πŸ“–CompOp
3 mathmath: PrimeSpectrum.isIdempotentElemEquivClopens_one_sub, coe_compl, PrimeSpectrum.isIdempotentElemEquivClopens_symm_compl
instHImp πŸ“–CompOp
1 mathmath: coe_himp
instInhabited πŸ“–CompOpβ€”
instMax πŸ“–CompOp
2 mathmath: PrimeSpectrum.isIdempotentElemEquivClopens_symm_sup, coe_sup
instMin πŸ“–CompOp
3 mathmath: PrimeSpectrum.isIdempotentElemEquivClopens_symm_inf, coe_inf, PrimeSpectrum.isIdempotentElemEquivClopens_mul
instPartialOrder πŸ“–CompOp
14 mathmath: exists_prod_subset, PrimeSpectrum.isIdempotentElemEquivClopens_symm_bot, PrimeSpectrum.isIdempotentElemEquivClopens_one_sub, coe_disjoint, PrimeSpectrum.isIdempotentElemEquivClopens_symm_inf, PrimeSpectrum.isIdempotentElemEquivClopens_symm_sup, PrimeSpectrum.isIdempotentElemEquivClopens_apply_toOpens, PrimeSpectrum.basicOpen_isIdempotentElemEquivClopens_symm, PrimeSpectrum.isIdempotentElemEquivClopens_symm_top, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, PrimeSpectrum.isIdempotentElemEquivClopens_mul, PrimeSpectrum.coe_isIdempotentElemEquivClopens_apply, PrimeSpectrum.isIdempotentElemEquivClopens_symm_compl, TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover
instSDiff πŸ“–CompOp
1 mathmath: coe_sdiff
instSProdProd πŸ“–CompOp
4 mathmath: exists_prod_subset, exists_finset_eq_sup_prod, surjective_finset_sup_prod, mem_prod
instSetLike πŸ“–CompOp
26 mathmath: coe_mk, coe_bot, ext_iff, TopologicalSpace.CompactOpens.coe_toClopens, coe_disjoint, ClopenUpperSet.coe_mk, isClopen, coe_sdiff, ContinuousMap.exists_finite_sum_const_indicator_approximation_of_mem_nhds_diagonal, coe_top, coe_inf, mem_mk, isOpen, coe_sup, ContinuousMap.exists_finite_sum_const_mulIndicator_approximation_of_mem_nhds_diagonal, coe_compl, isClosed, coe_himp, coe_finset_sup, coe_toCloseds, coe_toOpens, TopologicalSpace.IsOpenCover.exists_finite_clopen_cover, ContinuousMap.exists_disjoint_nonempty_clopen_cover_of_mem_nhds_diagonal, mem_prod, PrimeSpectrum.coe_isIdempotentElemEquivClopens_apply, TopologicalSpace.IsOpenCover.exists_finite_nonempty_disjoint_clopen_cover
instTop πŸ“–CompOp
2 mathmath: coe_top, PrimeSpectrum.isIdempotentElemEquivClopens_symm_top
toCloseds πŸ“–CompOp
1 mathmath: coe_toCloseds
toOpens πŸ“–CompOp
3 mathmath: PrimeSpectrum.isIdempotentElemEquivClopens_apply_toOpens, PrimeSpectrum.basicOpen_isIdempotentElemEquivClopens_symm, coe_toOpens

Theorems

NameKindAssumesProvesValidatesDepends On
coe_bot πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
Bot.bot
instBot
Set
Set.instEmptyCollection
β€”β€”
coe_compl πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
Compl.compl
instCompl
Set
Set.instCompl
β€”β€”
coe_disjoint πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
TopologicalSpace.Clopens
instSetLike
instPartialOrder
BiheytingAlgebra.toHeytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
β€”β€”
coe_finset_sup πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
Finset.sup
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.iUnion
Finset
Finset.instMembership
β€”Finset.induction_on
Finset.sup_empty
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Finset.sup_insert
Set.iUnion_iUnion_eq_or_left
coe_himp πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
HImp.himp
instHImp
Set
BooleanAlgebra.toHImp
Set.instBooleanAlgebra
β€”β€”
coe_inf πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
instMin
Set
Set.instInter
β€”β€”
coe_mk πŸ“–mathematicalIsClopenSetLike.coe
TopologicalSpace.Clopens
instSetLike
β€”β€”
coe_sdiff πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
instSDiff
Set
Set.instSDiff
β€”β€”
coe_sup πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
instMax
Set
Set.instUnion
β€”β€”
coe_toCloseds πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
TopologicalSpace.Closeds.instSetLike
toCloseds
TopologicalSpace.Clopens
instSetLike
β€”β€”
coe_toOpens πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
toOpens
TopologicalSpace.Clopens
instSetLike
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
Top.top
instTop
Set.univ
β€”β€”
ext πŸ“–β€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
β€”β€”SetLike.ext'
ext_iff πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Clopens
instSetLike
β€”ext
isClopen πŸ“–mathematicalβ€”IsClopen
SetLike.coe
TopologicalSpace.Clopens
instSetLike
β€”isClopen'
isClopen' πŸ“–mathematicalβ€”IsClopen
carrier
β€”β€”
isClosed πŸ“–mathematicalβ€”IsClosed
SetLike.coe
TopologicalSpace.Clopens
instSetLike
β€”IsClopen.isClosed
isClopen
isOpen πŸ“–mathematicalβ€”IsOpen
SetLike.coe
TopologicalSpace.Clopens
instSetLike
β€”IsClopen.isOpen
isClopen
mem_mk πŸ“–mathematicalIsClopenTopologicalSpace.Clopens
SetLike.instMembership
instSetLike
Set
Set.instMembership
β€”β€”
mem_prod πŸ“–mathematicalβ€”TopologicalSpace.Clopens
instTopologicalSpaceProd
SetLike.instMembership
instSetLike
SProd.sprod
instSProdProd
β€”β€”

TopologicalSpace.Closeds

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
2 mathmath: carrier_eq_coe, isClosed'
closure πŸ“–CompOp
10 mathmath: uniformContinuous_closure, closure_le, gc, continuous_closure, AlgebraicGeometry.Scheme.IdealSheafData.map_vanishingIdeal, PrimitiveSpectrum.closedsGC_closureOperator, AlgebraicGeometry.Scheme.IdealSheafData.support_map, mem_closure, coe_closure, isUniformInducing_closure
coframeMinimalAxioms πŸ“–CompOpβ€”
compl πŸ“–CompOp
7 mathmath: coe_compl, TopologicalSpace.Opens.isCoatom_iff, TopologicalSpace.Opens.complOrderIso_symm_apply, compl_compl, complOrderIso_apply, compl_bijective, TopologicalSpace.Opens.compl_compl
complOrderIso πŸ“–CompOp
2 mathmath: complOrderIso_symm_apply, complOrderIso_apply
gi πŸ“–CompOpβ€”
instCoframe πŸ“–CompOp
4 mathmath: AlgebraicGeometry.Scheme.support_nilradical, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_top, AlgebraicGeometry.Scheme.IdealSheafData.support_bot
instCompleteLattice πŸ“–CompOp
35 mathmath: iInf_def, AlgebraicGeometry.Scheme.IdealSheafData.support_mul, coe_iInf, instContinuousSup, coe_eq_empty, TopologicalSpace.NoetherianSpace.exists_finset_irreducible, UniformContinuous.sup_closeds, mem_sInf, lipschitz_sup, coe_bot, coe_finset_inf, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_sup, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_bot_iff, isAtom_iff, AlgebraicGeometry.Scheme.IdealSheafData.support_iSup, coe_inf, coe_sup, coe_top, coe_finset_sup, coe_eq_univ, TopologicalSpace.NoetherianSpace.exists_finite_set_closeds_irreducible, coe_sSup, isClopen_singleton_bot, iInf_mk, isAtom_coe, EMetric.Closeds.lipschitz_sup, uniformContinuous_sup, AlgebraicGeometry.Scheme.IdealSheafData.support_top, coe_sInf, AlgebraicGeometry.Scheme.IdealSheafData.support_sup, mem_iInf, AlgebraicGeometry.Scheme.IdealSheafData.support_sSup, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_iSup, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_sSup, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_bot
instInhabited πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
14 mathmath: complOrderIso_symm_apply, AlgebraicGeometry.Scheme.IdealSheafData.gc, TopologicalSpace.Opens.complOrderIso_apply, closure_le, TopologicalSpace.Opens.complOrderIso_symm_apply, gc, complOrderIso_apply, AlgebraicGeometry.Scheme.IdealSheafData.le_support_iff_le_vanishingIdeal, AlgebraicGeometry.Scheme.IdealSheafData.support_antitone, isAtom_iff, TopologicalSpace.noetherianSpace_TFAE, PrimitiveSpectrum.closedsGC_closureOperator, TopologicalSpace.instWellFoundedLTClosedsOfNoetherianSpace, isAtom_coe
instSetLike πŸ“–CompOp
71 mathmath: iInf_def, coe_compl, isClosed, AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp, mem_singleton, TopologicalSpace.Compacts.coe_toCloseds, isUniformEmbedding_coe, coe_iInf, ext_iff, closure_le, coe_eq_empty, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_mkOfMemSupportIff, TopologicalSpace.NoetherianSpace.exists_finset_irreducible, coe_preimage, gc, Filter.HasBasis.uniformity_closeds, AlgebraicGeometry.Scheme.IdealSheafData.range_glueDataObjΞΉ_ΞΉ_eq_support_inter, uniformity_def, AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff_of_mem, TopologicalSpace.NonemptyCompacts.mem_toCloseds, TopologicalSpace.NonemptyCompacts.coe_toCloseds, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_ideal, mem_sInf, coe_singleton, AlgebraicGeometry.Scheme.IdealSheafData.range_subschemeΞΉ, AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff, EMetric.isClosed_subsets_of_isClosed, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_ofIdealTop, coe_bot, edist_eq, AlgebraicGeometry.Scheme.IdealSheafData.mem_supportSet_iff_mem_support, coe_finset_inf, ClosedSubmodule.coe_toCloseds, TopologicalSpace.Compacts.mem_toCloseds, isClosed_subsets_of_isClosed, coe_nonempty, continuous_infEDist, AlgebraicGeometry.Scheme.IdealSheafData.map_vanishingIdeal, coe_inf, carrier_eq_coe, coe_sup, coe_top, PrimitiveSpectrum.closedsGC_closureOperator, coe_finset_sup, coe_eq_univ, TopologicalSpace.NoetherianSpace.exists_finite_set_closeds_irreducible, coe_mk, coe_sSup, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_eq_eq_iInter_zeroLocus, TopologicalSpace.Opens.coe_compl, AlgebraicGeometry.Scheme.IdealSheafData.support_map, TopologicalSpace.Clopens.coe_toCloseds, isAtom_coe, mem_closure, totallyBounded_subsets_of_totallyBounded, AlgebraicGeometry.Scheme.Hom.range_subset_ker_support, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_inter, AlgebraicGeometry.Scheme.Hom.support_ker, coe_closure, uniformContinuous_coe, mem_mk, EMetric.Closeds.edist_eq, coe_sInf, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_vanishingIdeal, EMetric.Closeds.isClosed_subsets_of_isClosed, mem_iInf, coe_eq_singleton_of_isAtom, instCanLiftSetCoeIsClosed, EMetric.continuous_infEdist_hausdorffEdist, AlgebraicGeometry.Scheme.IdealSheafData.subschemeΞΉ_apply, isOpen_inter_nonempty_of_isOpen
instSingletonOfT1Space πŸ“–CompOp
16 mathmath: TopologicalSpace.Compacts.toCloseds_singleton, mem_singleton, TopologicalSpace.Opens.isCoatom_iff, EMetric.Closeds.isometry_singleton, singleton_inj, mk_singleton, singleton_injective, coe_singleton, isometry_singleton, isAtom_iff, continuous_singleton, isUniformEmbedding_singleton, isClosedEmbedding_singleton, TopologicalSpace.NonemptyCompacts.toCloseds_singleton, isEmbedding_singleton, uniformContinuous_singleton
preimage πŸ“–CompOp
2 mathmath: coe_preimage, AlgebraicGeometry.Scheme.IdealSheafData.support_comap
singleton πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
carrier_eq_coe πŸ“–mathematicalβ€”carrier
SetLike.coe
TopologicalSpace.Closeds
instSetLike
β€”β€”
closure_le πŸ“–mathematicalβ€”TopologicalSpace.Closeds
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”IsClosed.closure_subset_iff
isClosed
coe_bot πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instEmptyCollection
β€”β€”
coe_closure πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
closure
closure
β€”β€”
coe_compl πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
compl
Compl.compl
Set
Set.instCompl
TopologicalSpace.Closeds
instSetLike
β€”β€”
coe_eq_empty πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
Set
Set.instEmptyCollection
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”SetLike.coe_injective
coe_eq_singleton_of_isAtom πŸ“–mathematicalIsAtom
TopologicalSpace.Closeds
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
instCompleteLattice
SetLike.coe
instSetLike
Set
Set.instSingletonSet
β€”minimal_nonempty_closed_eq_singleton
isClosed'
coe_nonempty
CanLift.prf
instCanLiftSetCoeIsClosed
SetLike.coe_injective
IsAtom.le_iff_eq
coe_eq_univ πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
Set.univ
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”SetLike.coe_injective
coe_finset_inf πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
Finset.inf
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
BoundedOrder.toOrderTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
CompleteLattice.toBoundedOrder
Set
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
β€”map_finset_inf
InfTopHom.instInfTopHomClass
coe_inf
coe_top
coe_finset_sup πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
Finset.sup
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toBoundedOrder
Set
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”map_finset_sup
SupBotHom.instSupBotHomClass
coe_sup
coe_bot
coe_iInf πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iInter
β€”Set.ext
coe_inf πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set
Set.instInter
β€”β€”
coe_mk πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
β€”β€”
coe_nonempty πŸ“–mathematicalβ€”Set.Nonempty
SetLike.coe
TopologicalSpace.Closeds
instSetLike
β€”Set.nonempty_iff_ne_empty
Iff.not
coe_eq_empty
coe_preimage πŸ“–mathematicalContinuousSetLike.coe
TopologicalSpace.Closeds
instSetLike
preimage
Set.preimage
β€”β€”
coe_sInf πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iInter
Set
Set.instMembership
β€”β€”
coe_sSup πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
closure
Set.sUnion
Set.image
Set
β€”β€”
coe_singleton πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
instSingletonOfT1Space
Set
Set.instSingletonSet
β€”β€”
coe_sup πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set
Set.instUnion
β€”β€”
coe_top πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.univ
β€”β€”
complOrderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
TopologicalSpace.Closeds
OrderDual
TopologicalSpace.Opens
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
OrderDual.instLE
TopologicalSpace.Opens.instPartialOrder
RelIso.instFunLike
complOrderIso
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
compl
β€”β€”
complOrderIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
OrderDual
TopologicalSpace.Opens
TopologicalSpace.Closeds
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
instPartialOrder
RelIso.instFunLike
RelIso.symm
complOrderIso
TopologicalSpace.Opens.compl
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”β€”
compl_bijective πŸ“–mathematicalβ€”Function.Bijective
TopologicalSpace.Closeds
TopologicalSpace.Opens
compl
β€”Function.bijective_iff_has_inverse
compl_compl
TopologicalSpace.Opens.compl_compl
compl_compl πŸ“–mathematicalβ€”TopologicalSpace.Opens.compl
compl
β€”ext
compl_compl
ext πŸ“–β€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
β€”β€”SetLike.ext'
ext_iff πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
instSetLike
β€”ext
gc πŸ“–mathematicalβ€”GaloisConnection
Set
TopologicalSpace.Closeds
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
closure
SetLike.coe
instSetLike
β€”HasSubset.Subset.trans
Set.instIsTransSubset
subset_closure
closure_minimal
isClosed
iInf_def πŸ“–mathematicalβ€”iInf
TopologicalSpace.Closeds
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iInter
SetLike.coe
instSetLike
isClosed_iInter
isClosed'
β€”ext
isClosed_iInter
isClosed'
coe_iInf
iInf_mk πŸ“–mathematicalIsClosediInf
TopologicalSpace.Closeds
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iInter
isClosed_iInter
β€”iInf_def
instCanLiftSetCoeIsClosed πŸ“–mathematicalβ€”CanLift
Set
TopologicalSpace.Closeds
SetLike.coe
instSetLike
IsClosed
β€”β€”
isAtom_coe πŸ“–mathematicalβ€”IsAtom
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
SetLike.coe
TopologicalSpace.Closeds
instSetLike
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”GaloisInsertion.isAtom_iff'
IsAtomistic.instIsAtomic
Set.instIsAtomistic
Set.isAtom_iff
closure_singleton
isAtom_iff πŸ“–mathematicalβ€”IsAtom
TopologicalSpace.Closeds
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
CompleteLattice.toBoundedOrder
instCompleteLattice
instSingletonOfT1Space
β€”β€”
isClosed πŸ“–mathematicalβ€”IsClosed
SetLike.coe
TopologicalSpace.Closeds
instSetLike
β€”isClosed'
isClosed' πŸ“–mathematicalβ€”IsClosed
carrier
β€”β€”
mem_closure πŸ“–mathematicalβ€”TopologicalSpace.Closeds
SetLike.instMembership
instSetLike
closure
Set
Set.instMembership
closure
β€”β€”
mem_iInf πŸ“–mathematicalβ€”TopologicalSpace.Closeds
SetLike.instMembership
instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”β€”
mem_mk πŸ“–mathematicalβ€”TopologicalSpace.Closeds
SetLike.instMembership
instSetLike
Set
Set.instMembership
β€”β€”
mem_sInf πŸ“–mathematicalβ€”TopologicalSpace.Closeds
SetLike.instMembership
instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”Set.mem_iInterβ‚‚
mem_singleton πŸ“–mathematicalβ€”TopologicalSpace.Closeds
SetLike.instMembership
instSetLike
instSingletonOfT1Space
β€”β€”
mk_singleton πŸ“–mathematicalβ€”Set
Set.instSingletonSet
isClosed_singleton
TopologicalSpace.Closeds
instSingletonOfT1Space
β€”isClosed_singleton
singleton_inj πŸ“–mathematicalβ€”TopologicalSpace.Closeds
instSingletonOfT1Space
β€”singleton_injective
singleton_injective πŸ“–mathematicalβ€”TopologicalSpace.Closeds
instSingletonOfT1Space
β€”Function.Injective.of_comp
Set.singleton_injective

TopologicalSpace.IrreducibleCloseds

Definitions

NameCategoryTheorems
carrier πŸ“–CompOp
4 mathmath: isIrreducible', equivSubtype_apply, isClosed', equivSubtype'_apply
equivSubtype πŸ“–CompOp
2 mathmath: equivSubtype_apply, equivSubtype_symm_apply
equivSubtype' πŸ“–CompOp
2 mathmath: equivSubtype'_apply, equivSubtype'_symm_apply
instPartialOrder πŸ“–CompOp
2 mathmath: map_strictMono_of_isInducing, map_mono
instSetLike πŸ“–CompOp
10 mathmath: coe_mk, instCanLiftSetCoeAndIsIrreducibleIsClosed, is_irreducible', isIrreducible, isClosed, is_closed', coe_singleton, mem_singleton, ext_iff, coe_map
instSingletonOfT1Space πŸ“–CompOp
5 mathmath: singleton_inj, singleton_injective, coe_singleton, mem_singleton, mk_singleton
map πŸ“–CompOp
4 mathmath: map_strictMono_of_isInducing, map_injective_of_isInducing, map_mono, coe_map
orderIsoSubtype πŸ“–CompOpβ€”
orderIsoSubtype' πŸ“–CompOpβ€”
singleton πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_map πŸ“–mathematicalContinuousSetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
map
closure
Set.image
β€”β€”
coe_mk πŸ“–mathematicalIsIrreducibleSetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
β€”β€”
coe_singleton πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
instSingletonOfT1Space
Set
Set.instSingletonSet
β€”β€”
equivSubtype'_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TopologicalSpace.IrreducibleCloseds
Set
IsClosed
IsIrreducible
EquivLike.toFunLike
Equiv.instEquivLike
equivSubtype'
carrier
β€”β€”
equivSubtype'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set
IsClosed
IsIrreducible
TopologicalSpace.IrreducibleCloseds
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivSubtype'
β€”β€”
equivSubtype_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
TopologicalSpace.IrreducibleCloseds
Set
IsIrreducible
IsClosed
EquivLike.toFunLike
Equiv.instEquivLike
equivSubtype
carrier
β€”β€”
equivSubtype_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set
IsIrreducible
IsClosed
TopologicalSpace.IrreducibleCloseds
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivSubtype
β€”β€”
ext πŸ“–β€”SetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
β€”β€”SetLike.ext'
ext_iff πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
β€”ext
instCanLiftSetCoeAndIsIrreducibleIsClosed πŸ“–mathematicalβ€”CanLift
Set
TopologicalSpace.IrreducibleCloseds
SetLike.coe
instSetLike
IsIrreducible
IsClosed
β€”β€”
isClosed πŸ“–mathematicalβ€”IsClosed
SetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
β€”isClosed'
isClosed' πŸ“–mathematicalβ€”IsClosed
carrier
β€”β€”
isIrreducible πŸ“–mathematicalβ€”IsIrreducible
SetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
β€”isIrreducible'
isIrreducible' πŸ“–mathematicalβ€”IsIrreducible
carrier
β€”β€”
is_closed' πŸ“–mathematicalβ€”IsClosed
SetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
β€”isClosed
is_irreducible' πŸ“–mathematicalβ€”IsIrreducible
SetLike.coe
TopologicalSpace.IrreducibleCloseds
instSetLike
β€”isIrreducible
map_injective_of_isInducing πŸ“–mathematicalTopology.IsInducingTopologicalSpace.IrreducibleCloseds
map
Topology.IsInducing.continuous
β€”Topology.IsInducing.continuous
SetLike.coe_injective
IsClosed.closure_eq
isClosed
Topology.IsInducing.closure_eq_preimage_closure_image
map_mono πŸ“–mathematicalContinuousMonotone
TopologicalSpace.IrreducibleCloseds
PartialOrder.toPreorder
instPartialOrder
map
β€”closure_mono
Set.image_mono
map_strictMono_of_isInducing πŸ“–mathematicalTopology.IsInducingStrictMono
TopologicalSpace.IrreducibleCloseds
PartialOrder.toPreorder
instPartialOrder
map
Topology.IsInducing.continuous
β€”Monotone.strictMono_of_injective
Topology.IsInducing.continuous
map_mono
map_injective_of_isInducing
mem_singleton πŸ“–mathematicalβ€”TopologicalSpace.IrreducibleCloseds
SetLike.instMembership
instSetLike
instSingletonOfT1Space
β€”β€”
mk_singleton πŸ“–mathematicalβ€”Set
Set.instSingletonSet
isIrreducible_singleton
isClosed_singleton
TopologicalSpace.IrreducibleCloseds
instSingletonOfT1Space
β€”isIrreducible_singleton
isClosed_singleton
singleton_inj πŸ“–mathematicalβ€”TopologicalSpace.IrreducibleCloseds
instSingletonOfT1Space
β€”singleton_injective
singleton_injective πŸ“–mathematicalβ€”TopologicalSpace.IrreducibleCloseds
instSingletonOfT1Space
β€”Function.Injective.of_comp
Set.singleton_injective

TopologicalSpace.Opens

Definitions

NameCategoryTheorems
compl πŸ“–CompOp
6 mathmath: TopologicalSpace.Closeds.complOrderIso_symm_apply, complOrderIso_apply, TopologicalSpace.Closeds.compl_compl, compl_bijective, coe_compl, compl_compl
complOrderIso πŸ“–CompOp
2 mathmath: complOrderIso_apply, complOrderIso_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_compl πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Closeds
TopologicalSpace.Closeds.instSetLike
compl
Compl.compl
Set
Set.instCompl
TopologicalSpace.Opens
instSetLike
β€”β€”
complOrderIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
TopologicalSpace.Opens
OrderDual
TopologicalSpace.Closeds
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
OrderDual.instLE
TopologicalSpace.Closeds.instPartialOrder
RelIso.instFunLike
complOrderIso
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
compl
β€”β€”
complOrderIso_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
OrderDual
TopologicalSpace.Closeds
TopologicalSpace.Opens
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.Closeds.instPartialOrder
instPartialOrder
RelIso.instFunLike
RelIso.symm
complOrderIso
TopologicalSpace.Closeds.compl
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”β€”
compl_bijective πŸ“–mathematicalβ€”Function.Bijective
TopologicalSpace.Opens
TopologicalSpace.Closeds
compl
β€”Function.bijective_iff_has_inverse
compl_compl
TopologicalSpace.Closeds.compl_compl
compl_compl πŸ“–mathematicalβ€”TopologicalSpace.Closeds.compl
compl
β€”ext
compl_compl
isCoatom_iff πŸ“–mathematicalβ€”IsCoatom
TopologicalSpace.Opens
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
instCompleteLattice
TopologicalSpace.Closeds.compl
TopologicalSpace.Closeds
TopologicalSpace.Closeds.instSingletonOfT1Space
β€”compl_compl
isAtom_dual_iff_isCoatom
OrderIso.isAtom_iff
Function.Bijective.injective
TopologicalSpace.Closeds.compl_bijective

---

← Back to Index