Documentation Verification Report

Closeds

πŸ“ Source: Mathlib/Topology/UniformSpace/Closeds.lean

Statistics

MetricCount
DefinitionsCloseds, Closeds, uniformSpace, uniformSpace, uniformSpace, hausdorff, hausdorffEntourage
7
Theoremsuniformity_closeds, uniformity_compacts, uniformity_hausdorff, uniformity_nonemptyCompacts, powerset_hausdorff, nhds_hausdorff_eq_nhds_vietoris, compacts_map, image_hausdorff, nonemptyCompacts_map, compacts_map, image_hausdorff, nonemptyCompacts_map, compactSpace_iff, continuous_closure, continuous_singleton, discreteUniformity_iff, instCompactSpace, instContinuousSup, instDiscreteUniformity, instNoncompactSpace, instT0Space, isClopen_singleton_bot, isClosedEmbedding_singleton, isClosed_subsets_of_isClosed, isEmbedding_singleton, isOpen_inter_nonempty_of_isOpen, isUniformEmbedding_coe, isUniformEmbedding_singleton, isUniformInducing_closure, noncompactSpace_iff, totallyBounded_subsets_of_totallyBounded, uniformContinuous_closure, uniformContinuous_coe, uniformContinuous_singleton, uniformContinuous_sup, uniformity_def, continuous_toCloseds, discreteUniformity_iff, instDiscreteUniformity, isEmbedding_toCloseds, isUniformEmbedding_coe, isUniformEmbedding_singleton, isUniformEmbedding_toCloseds, totallyBounded_subsets_of_totallyBounded, uniformContinuous_coe, uniformContinuous_singleton, uniformContinuous_sup, uniformContinuous_toCloseds, uniformity_def, continuous_toCloseds, discreteUniformity_iff, instDiscreteUniformity, isEmbedding_toCloseds, isUniformEmbedding_coe, isUniformEmbedding_singleton, isUniformEmbedding_toCloseds, isUniformEmbedding_toCompacts, totallyBounded_subsets_of_totallyBounded, uniformContinuous_coe, uniformContinuous_singleton, uniformContinuous_sup, uniformContinuous_toCloseds, uniformContinuous_toCompacts, uniformity_def, exists_prodMk_finset_mem_hausdorffEntourage, nhds_vietoris_le_nhds_hausdorff, powerset_hausdorff, compacts_map, image_hausdorff, nonemptyCompacts_map, sup_closeds, sup_compacts, sup_nonemptyCompacts, continuous_closure, instCompactSpaceSet, instDiscreteUniformitySet, isClopen_singleton_empty, isClosedEmbedding_singleton, isClosed_powerset, isOpen_inter_nonempty_of_isOpen, isUniformEmbedding_singleton, isUniformInducing_closure, nhds_closure, uniformContinuous_closure, uniformContinuous_union, hausdorffEntourage_comp, hausdorffEntourage_id, hausdorffEntourage_mono, inv_hausdorffEntourage, isRefl_hausdorffEntourage, isSymm_hausdorffEntourage, isTrans_hausdorffEntourage, mem_hausdorffEntourage, monotone_hausdorffEntourage, singleton_mem_hausdorffEntourage, union_mem_hausdorffEntourage
96
Total103

ClosureOperator

Definitions

NameCategoryTheorems
Closeds πŸ“–CompOp
1 mathmath: closureOperator_gi_self

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
uniformity_closeds πŸ“–mathematicalFilter.HasBasis
uniformity
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds.uniformSpace
Set.preimage
Set
SetLike.coe
TopologicalSpace.Closeds.instSetLike
hausdorffEntourage
β€”comap
uniformity_hausdorff
uniformity_compacts πŸ“–mathematicalFilter.HasBasis
uniformity
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Compacts.uniformSpace
Set.preimage
Set
SetLike.coe
TopologicalSpace.Compacts.instSetLike
hausdorffEntourage
β€”comap
uniformity_hausdorff
uniformity_hausdorff πŸ“–mathematicalFilter.HasBasis
uniformity
Set
UniformSpace.hausdorff
SetRel
hausdorffEntourage
β€”lift'
monotone_hausdorffEntourage
uniformity_nonemptyCompacts πŸ“–mathematicalFilter.HasBasis
uniformity
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.NonemptyCompacts.uniformSpace
Set.preimage
Set
SetLike.coe
TopologicalSpace.NonemptyCompacts.instSetLike
hausdorffEntourage
β€”comap
uniformity_hausdorff

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
powerset_hausdorff πŸ“–mathematicalβ€”IsClosed
Set
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
Set.powerset
β€”UniformSpace.hausdorff.isOpen_inter_nonempty_of_isOpen
isOpen_compl

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
nhds_hausdorff_eq_nhds_vietoris πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
nhds
Set
UniformSpace.hausdorff
TopologicalSpace.vietoris
β€”le_antisymm
TopologicalSpace.nhds_generateFrom
Filter.HasBasis.mem_iff
nhdsSet_basis_uniformity
Filter.basis_sets
IsOpen.mem_nhdsSet
Filter.mp_mem
UniformSpace.ball_mem_nhds
Filter.mem_lift'
Filter.univ_mem'
HasSubset.Subset.trans
Set.instIsTransSubset
Set.mem_biUnion
IsOpen.mem_nhds
UniformSpace.hausdorff.isOpen_inter_nonempty_of_isOpen
TotallyBounded.nhds_vietoris_le_nhds_hausdorff
totallyBounded

IsUniformEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
compacts_map πŸ“–mathematicalIsUniformEmbeddingTopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Compacts.uniformSpace
TopologicalSpace.Compacts.map
UniformContinuous.continuous
IsUniformInducing.uniformContinuous
toIsUniformInducing
β€”UniformContinuous.continuous
IsUniformInducing.uniformContinuous
isUniformInducing
IsUniformInducing.compacts_map
toIsUniformInducing
TopologicalSpace.Compacts.map_injective
injective
image_hausdorff πŸ“–mathematicalIsUniformEmbeddingSet
UniformSpace.hausdorff
Set.image
β€”IsUniformInducing.image_hausdorff
isUniformInducing
Function.Injective.image_injective
injective
nonemptyCompacts_map πŸ“–mathematicalIsUniformEmbeddingTopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.NonemptyCompacts.uniformSpace
TopologicalSpace.NonemptyCompacts.map
UniformContinuous.continuous
IsUniformInducing.uniformContinuous
toIsUniformInducing
β€”UniformContinuous.continuous
IsUniformInducing.uniformContinuous
isUniformInducing
IsUniformInducing.nonemptyCompacts_map
toIsUniformInducing
TopologicalSpace.NonemptyCompacts.map_injective
injective

IsUniformInducing

Theorems

NameKindAssumesProvesValidatesDepends On
compacts_map πŸ“–mathematicalIsUniformInducingTopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Compacts.uniformSpace
TopologicalSpace.Compacts.map
UniformContinuous.continuous
uniformContinuous
β€”of_comp
UniformContinuous.continuous
uniformContinuous
UniformContinuous.compacts_map
TopologicalSpace.Compacts.uniformContinuous_coe
comp
image_hausdorff
IsUniformEmbedding.isUniformInducing
TopologicalSpace.Compacts.isUniformEmbedding_coe
image_hausdorff πŸ“–mathematicalIsUniformInducingSet
UniformSpace.hausdorff
Set.image
β€”Filter.comap_lift'_eq
comap_uniformity
Filter.comap_lift'_eq2
monotone_hausdorffEntourage
Set.ext
nonemptyCompacts_map πŸ“–mathematicalIsUniformInducingTopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.NonemptyCompacts.uniformSpace
TopologicalSpace.NonemptyCompacts.map
UniformContinuous.continuous
uniformContinuous
β€”of_comp
UniformContinuous.continuous
uniformContinuous
UniformContinuous.nonemptyCompacts_map
TopologicalSpace.NonemptyCompacts.uniformContinuous_coe
comp
image_hausdorff
IsUniformEmbedding.isUniformInducing
TopologicalSpace.NonemptyCompacts.isUniformEmbedding_coe

TopologicalSpace

Definitions

NameCategoryTheorems
Closeds πŸ“–CompData
145 mathmath: NonemptyCompacts.uniformContinuous_toCloseds, Closeds.uniformContinuous_closure, Compacts.toCloseds_singleton, Closeds.iInf_def, AlgebraicGeometry.Scheme.support_nilradical, ClosedSubmodule.toCloseds_injective, Closeds.coe_compl, NonemptyCompacts.toCloseds_injective, Closeds.complOrderIso_symm_apply, Closeds.noncompactSpace_iff, Closeds.isClosed, AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp, Closeds.mem_singleton, AlgebraicGeometry.Scheme.IdealSheafData.gc, EMetric.NonemptyCompacts.isometry_toCloseds, EMetric.NonemptyCompacts.isUniformEmbedding_toCloseds, Compacts.coe_toCloseds, Closeds.isUniformEmbedding_coe, Opens.isCoatom_iff, EMetric.Closeds.isometry_singleton, NonemptyCompacts.isClosed_in_closeds, AlgebraicGeometry.Scheme.IdealSheafData.support_mul, Closeds.coe_iInf, Closeds.ext_iff, Opens.complOrderIso_apply, Closeds.instContinuousSup, Closeds.closure_le, Closeds.coe_eq_empty, Opens.complOrderIso_symm_apply, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_mkOfMemSupportIff, NoetherianSpace.exists_finset_irreducible, Closeds.coe_preimage, Closeds.singleton_inj, Closeds.gc, Closeds.continuous_closure, Filter.HasBasis.uniformity_closeds, AlgebraicGeometry.Scheme.IdealSheafData.range_glueDataObjΞΉ_ΞΉ_eq_support_inter, Closeds.mk_singleton, Closeds.singleton_injective, Closeds.uniformity_def, AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff_of_mem, NonemptyCompacts.mem_toCloseds, NonemptyCompacts.coe_toCloseds, Closeds.instNoncompactSpace, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_ideal, Closeds.mem_sInf, Closeds.complOrderIso_apply, Closeds.coe_singleton, AlgebraicGeometry.Scheme.IdealSheafData.range_subschemeΞΉ, AlgebraicGeometry.Scheme.IdealSheafData.mem_support_iff, AlgebraicGeometry.Scheme.IdealSheafData.le_support_iff_le_vanishingIdeal, NonemptyCompacts.isEmbedding_toCloseds, Compacts.uniformContinuous_toCloseds, Closeds.lipschitz_sup, Opens.compl_bijective, EMetric.isClosed_subsets_of_isClosed, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_ofIdealTop, AlgebraicGeometry.Scheme.IdealSheafData.support_antitone, Closeds.coe_bot, Compacts.isUniformEmbedding_toCloseds, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_top_iff, Closeds.edist_eq, Closeds.isometry_singleton, AlgebraicGeometry.Scheme.IdealSheafData.mem_supportSet_iff_mem_support, Compacts.toCloseds_injective, Closeds.coe_finset_inf, ClosedSubmodule.coe_toCloseds, Compacts.mem_toCloseds, Closeds.isClosed_subsets_of_isClosed, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_sup, Closeds.instCompactSpace, Closeds.coe_nonempty, NonemptyCompacts.isUniformEmbedding_toCloseds, Closeds.instDiscreteUniformity, Closeds.continuous_infEDist, AlgebraicGeometry.Scheme.IdealSheafData.support_eq_bot_iff, Closeds.isAtom_iff, AlgebraicGeometry.Scheme.IdealSheafData.map_vanishingIdeal, NonemptyCompacts.isometry_toCloseds, noetherianSpace_TFAE, AlgebraicGeometry.Scheme.IdealSheafData.support_iSup, Closeds.instCompleteSpace, Closeds.continuous_singleton, Closeds.coe_inf, Closeds.carrier_eq_coe, Closeds.coe_sup, Closeds.coe_top, EMetric.NonemptyCompacts.isClosed_in_closeds, PrimitiveSpectrum.closedsGC_closureOperator, Closeds.coe_finset_sup, Closeds.coe_eq_univ, NoetherianSpace.exists_finite_set_closeds_irreducible, instWellFoundedLTClosedsOfNoetherianSpace, Closeds.coe_mk, Closeds.coe_sSup, Compacts.continuous_toCloseds, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_eq_eq_iInter_zeroLocus, Opens.coe_compl, Closeds.isClopen_singleton_bot, Closeds.iInf_mk, AlgebraicGeometry.Scheme.IdealSheafData.support_map, Clopens.coe_toCloseds, Closeds.isAtom_coe, Closeds.mem_closure, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_top, Closeds.totallyBounded_subsets_of_totallyBounded, NonemptyCompacts.continuous_toCloseds, AlgebraicGeometry.Scheme.Hom.range_subset_ker_support, EMetric.NonemptyCompacts.ToCloseds.isUniformEmbedding, Closeds.compl_bijective, EMetric.Closeds.lipschitz_sup, Closeds.isUniformEmbedding_singleton, Closeds.compactSpace_iff, Closeds.uniformContinuous_sup, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_inter, AlgebraicGeometry.Scheme.Hom.support_ker, Compacts.isEmbedding_toCloseds, AlgebraicGeometry.Scheme.IdealSheafData.support_top, Closeds.coe_closure, Closeds.uniformContinuous_coe, Closeds.isUniformInducing_closure, EMetric.NonemptyCompacts.continuous_toCloseds, Closeds.isClosedEmbedding_singleton, Closeds.mem_mk, EMetric.Closeds.edist_eq, Closeds.coe_sInf, AlgebraicGeometry.Scheme.IdealSheafData.coe_support_vanishingIdeal, EMetric.Closeds.isClosed_subsets_of_isClosed, AlgebraicGeometry.Scheme.IdealSheafData.support_bot, NonemptyCompacts.toCloseds_singleton, AlgebraicGeometry.Scheme.IdealSheafData.support_sup, Closeds.mem_iInf, AlgebraicGeometry.Scheme.IdealSheafData.support_sSup, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_iSup, Compacts.isometry_toCloseds, Closeds.isEmbedding_singleton, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_sSup, Closeds.uniformContinuous_singleton, Closeds.instCanLiftSetCoeIsClosed, Closeds.discreteUniformity_iff, EMetric.continuous_infEdist_hausdorffEdist, AlgebraicGeometry.Scheme.IdealSheafData.vanishingIdeal_bot, AlgebraicGeometry.Scheme.IdealSheafData.subschemeΞΉ_apply, Closeds.instT0Space, Closeds.isOpen_inter_nonempty_of_isOpen

TopologicalSpace.Closeds

Definitions

NameCategoryTheorems
uniformSpace πŸ“–CompOp
43 mathmath: TopologicalSpace.NonemptyCompacts.uniformContinuous_toCloseds, uniformContinuous_closure, noncompactSpace_iff, EMetric.NonemptyCompacts.isUniformEmbedding_toCloseds, isUniformEmbedding_coe, TopologicalSpace.NonemptyCompacts.isClosed_in_closeds, instContinuousSup, continuous_closure, Filter.HasBasis.uniformity_closeds, uniformity_def, instNoncompactSpace, TopologicalSpace.NonemptyCompacts.isEmbedding_toCloseds, TopologicalSpace.Compacts.uniformContinuous_toCloseds, EMetric.isClosed_subsets_of_isClosed, TopologicalSpace.Compacts.isUniformEmbedding_toCloseds, isClosed_subsets_of_isClosed, instCompactSpace, TopologicalSpace.NonemptyCompacts.isUniformEmbedding_toCloseds, instDiscreteUniformity, continuous_infEDist, instCompleteSpace, continuous_singleton, EMetric.NonemptyCompacts.isClosed_in_closeds, TopologicalSpace.Compacts.continuous_toCloseds, isClopen_singleton_bot, totallyBounded_subsets_of_totallyBounded, TopologicalSpace.NonemptyCompacts.continuous_toCloseds, EMetric.NonemptyCompacts.ToCloseds.isUniformEmbedding, isUniformEmbedding_singleton, compactSpace_iff, uniformContinuous_sup, TopologicalSpace.Compacts.isEmbedding_toCloseds, uniformContinuous_coe, isUniformInducing_closure, EMetric.NonemptyCompacts.continuous_toCloseds, isClosedEmbedding_singleton, EMetric.Closeds.isClosed_subsets_of_isClosed, isEmbedding_singleton, uniformContinuous_singleton, discreteUniformity_iff, EMetric.continuous_infEdist_hausdorffEdist, instT0Space, isOpen_inter_nonempty_of_isOpen

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_iff πŸ“–mathematicalβ€”CompactSpace
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
β€”compactSpace_of_finite_subfamily_closed
IsCompact.elim_finite_subfamily_closed
IsClosed.isCompact
IsClopen.isClosed
IsClopen.compl
isClopen_singleton_bot
isClosed_subsets_of_isClosed
Set.iInter_congr_Prop
Set.Subset.rfl
isClosed_biInter
instCompactSpace
continuous_closure πŸ“–mathematicalβ€”Continuous
Set
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
uniformSpace
closure
β€”UniformContinuous.continuous
uniformContinuous_closure
continuous_singleton πŸ“–mathematicalβ€”Continuous
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
instSingletonOfT1Space
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
β€”Topology.IsEmbedding.continuous
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
isEmbedding_singleton
discreteUniformity_iff πŸ“–mathematicalβ€”DiscreteUniformity
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
β€”IsUniformEmbedding.discreteUniformity
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
isUniformEmbedding_singleton
instDiscreteUniformity
instCompactSpace πŸ“–mathematicalβ€”CompactSpace
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
β€”Set.image_univ
Function.Surjective.range_eq
GaloisInsertion.l_surjective
IsCompact.image
isCompact_univ
UniformSpace.hausdorff.instCompactSpaceSet
continuous_closure
instContinuousSup πŸ“–mathematicalβ€”ContinuousSup
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”UniformContinuous.continuous
uniformContinuous_sup
instDiscreteUniformity πŸ“–mathematicalβ€”DiscreteUniformity
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
β€”IsUniformEmbedding.discreteUniformity
UniformSpace.hausdorff.instDiscreteUniformitySet
isUniformEmbedding_coe
instNoncompactSpace πŸ“–mathematicalβ€”NoncompactSpace
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
β€”noncompactSpace_iff
instT0Space πŸ“–mathematicalβ€”T0Space
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
β€”isClosed_iff_frequently
isClosed
nhds_eq_comap_uniformity
Filter.frequently_comap
Filter.frequently_iff
mem_of_mem_nhds
Inseparable.nhds_le_uniformity
Filter.preimage_mem_comap
Filter.mem_lift'
le_antisymm
Inseparable.symm
isClopen_singleton_bot πŸ“–mathematicalβ€”IsClopen
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
Set
Set.instSingletonSet
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Set.ext
IsClopen.preimage
UniformSpace.hausdorff.isClopen_singleton_empty
UniformContinuous.continuous
uniformContinuous_coe
isClosedEmbedding_singleton πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
instSingletonOfT1Space
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
β€”T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
IsUniformEmbedding.isEmbedding
isUniformEmbedding_singleton
Function.Injective.preimage_image
SetLike.coe_injective
Set.range_comp
IsClosed.preimage
UniformContinuous.continuous
uniformContinuous_coe
Topology.IsClosedEmbedding.isClosed_range
UniformSpace.hausdorff.isClosedEmbedding_singleton
isClosed_subsets_of_isClosed πŸ“–mathematicalβ€”IsClosed
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”isClosed_induced
IsClosed.powerset_hausdorff
isEmbedding_singleton πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
instSingletonOfT1Space
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
β€”IsUniformEmbedding.isEmbedding
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
isUniformEmbedding_singleton
isOpen_inter_nonempty_of_isOpen πŸ“–mathematicalIsOpen
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
uniformSpace
setOf
Set.Nonempty
Set
Set.instInter
SetLike.coe
instSetLike
β€”isOpen_induced
UniformSpace.hausdorff.isOpen_inter_nonempty_of_isOpen
isUniformEmbedding_coe πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
Set
uniformSpace
UniformSpace.hausdorff
SetLike.coe
instSetLike
β€”SetLike.coe_injective
isUniformEmbedding_singleton πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
instSingletonOfT1Space
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
β€”T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
IsUniformEmbedding.of_comp_iff
isUniformEmbedding_coe
UniformSpace.hausdorff.isUniformEmbedding_singleton
isUniformInducing_closure πŸ“–mathematicalβ€”IsUniformInducing
Set
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
uniformSpace
closure
β€”IsUniformInducing.isUniformInducing_comp_iff
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_coe
UniformSpace.hausdorff.isUniformInducing_closure
noncompactSpace_iff πŸ“–mathematicalβ€”NoncompactSpace
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
β€”β€”
totallyBounded_subsets_of_totallyBounded πŸ“–mathematicalTotallyBoundedTopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”totallyBounded_preimage
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_coe
TotallyBounded.powerset_hausdorff
uniformContinuous_closure πŸ“–mathematicalβ€”UniformContinuous
Set
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
uniformSpace
closure
β€”IsUniformInducing.uniformContinuous
isUniformInducing_closure
uniformContinuous_coe πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
Set
uniformSpace
UniformSpace.hausdorff
SetLike.coe
instSetLike
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_coe
uniformContinuous_singleton πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
instSingletonOfT1Space
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
β€”IsUniformInducing.uniformContinuous
T2Space.t1Space
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_singleton
uniformContinuous_sup πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
instUniformSpaceProd
uniformSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_coe
UniformContinuous.comp
UniformSpace.hausdorff.uniformContinuous_union
UniformContinuous.prodMap
uniformContinuous_coe
uniformity_def πŸ“–mathematicalβ€”uniformity
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
uniformSpace
Filter.comap
Set
SetLike.coe
instSetLike
Filter.lift'
hausdorffEntourage
β€”β€”

TopologicalSpace.Compacts

Definitions

NameCategoryTheorems
uniformSpace πŸ“–CompOp
17 mathmath: uniformContinuous_singleton, uniformity_def, totallyBounded_subsets_of_totallyBounded, Filter.HasBasis.uniformity_compacts, discreteUniformity_iff, uniformContinuous_toCloseds, IsUniformInducing.compacts_map, isUniformEmbedding_toCloseds, IsUniformEmbedding.compacts_map, uniformContinuous_sup, UniformContinuous.compacts_map, isUniformEmbedding_singleton, TopologicalSpace.NonemptyCompacts.isUniformEmbedding_toCompacts, uniformContinuous_coe, instDiscreteUniformity, isUniformEmbedding_coe, TopologicalSpace.NonemptyCompacts.uniformContinuous_toCompacts

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_toCloseds πŸ“–mathematicalβ€”Continuous
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
topology
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”UniformContinuous.continuous
uniformContinuous_toCloseds
discreteUniformity_iff πŸ“–mathematicalβ€”DiscreteUniformity
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
uniformSpace
β€”IsUniformEmbedding.discreteUniformity
isUniformEmbedding_singleton
instDiscreteUniformity
instDiscreteUniformity πŸ“–mathematicalβ€”DiscreteUniformity
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
uniformSpace
β€”IsUniformEmbedding.discreteUniformity
UniformSpace.hausdorff.instDiscreteUniformitySet
isUniformEmbedding_coe
isEmbedding_toCloseds πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
topology
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding_toCloseds
isUniformEmbedding_coe πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
Set
uniformSpace
UniformSpace.hausdorff
SetLike.coe
instSetLike
β€”SetLike.coe_injective
isUniformEmbedding_singleton πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
uniformSpace
instSingleton
β€”IsUniformEmbedding.of_comp_iff
isUniformEmbedding_coe
UniformSpace.hausdorff.isUniformEmbedding_singleton
isUniformEmbedding_toCloseds πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
uniformSpace
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”Filter.comap_comap
toCloseds_injective
totallyBounded_subsets_of_totallyBounded πŸ“–mathematicalTotallyBoundedTopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
uniformSpace
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”totallyBounded_preimage
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_coe
TotallyBounded.powerset_hausdorff
uniformContinuous_coe πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
Set
uniformSpace
UniformSpace.hausdorff
SetLike.coe
instSetLike
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_coe
uniformContinuous_singleton πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
uniformSpace
instSingleton
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_singleton
uniformContinuous_sup πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
instUniformSpaceProd
uniformSpace
instMax
β€”IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_coe
UniformContinuous.comp
UniformSpace.hausdorff.uniformContinuous_union
UniformContinuous.prodMap
uniformContinuous_coe
uniformContinuous_toCloseds πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
uniformSpace
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_toCloseds
uniformity_def πŸ“–mathematicalβ€”uniformity
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
uniformSpace
Filter.comap
Set
SetLike.coe
instSetLike
Filter.lift'
hausdorffEntourage
β€”β€”

TopologicalSpace.NonemptyCompacts

Definitions

NameCategoryTheorems
uniformSpace πŸ“–CompOp
21 mathmath: uniformContinuous_toCloseds, EMetric.NonemptyCompacts.isUniformEmbedding_toCloseds, Filter.HasBasis.uniformity_nonemptyCompacts, uniformContinuous_coe, uniformity_def, uniformContinuous_singleton, instDiscreteUniformity, uniformContinuous_sup, Metric.uniformContinuous_infDist_Hausdorff_dist, isUniformEmbedding_coe, isUniformEmbedding_toCloseds, totallyBounded_subsets_of_totallyBounded, isUniformEmbedding_toCompacts, isUniformEmbedding_singleton, instCompleteSpace, discreteUniformity_iff, UniformContinuous.nonemptyCompacts_map, EMetric.NonemptyCompacts.ToCloseds.isUniformEmbedding, uniformContinuous_toCompacts, IsUniformInducing.nonemptyCompacts_map, IsUniformEmbedding.nonemptyCompacts_map

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_toCloseds πŸ“–mathematicalβ€”Continuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
topology
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”UniformContinuous.continuous
uniformContinuous_toCloseds
discreteUniformity_iff πŸ“–mathematicalβ€”DiscreteUniformity
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
uniformSpace
β€”IsUniformEmbedding.discreteUniformity
isUniformEmbedding_singleton
instDiscreteUniformity
instDiscreteUniformity πŸ“–mathematicalβ€”DiscreteUniformity
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
uniformSpace
β€”IsUniformEmbedding.discreteUniformity
UniformSpace.hausdorff.instDiscreteUniformitySet
isUniformEmbedding_coe
isEmbedding_toCloseds πŸ“–mathematicalβ€”Topology.IsEmbedding
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
topology
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding_toCloseds
isUniformEmbedding_coe πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
Set
uniformSpace
UniformSpace.hausdorff
SetLike.coe
instSetLike
β€”SetLike.coe_injective
isUniformEmbedding_singleton πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
uniformSpace
instSingleton
β€”IsUniformEmbedding.of_comp_iff
isUniformEmbedding_coe
UniformSpace.hausdorff.isUniformEmbedding_singleton
isUniformEmbedding_toCloseds πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
uniformSpace
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”Filter.comap_comap
toCloseds_injective
isUniformEmbedding_toCompacts πŸ“–mathematicalβ€”IsUniformEmbedding
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Compacts
uniformSpace
TopologicalSpace.Compacts.uniformSpace
toCompacts
β€”Filter.comap_comap
toCompacts_injective
totallyBounded_subsets_of_totallyBounded πŸ“–mathematicalTotallyBoundedTopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
uniformSpace
setOf
Set
Set.instHasSubset
SetLike.coe
instSetLike
β€”totallyBounded_preimage
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_coe
TotallyBounded.powerset_hausdorff
uniformContinuous_coe πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
Set
uniformSpace
UniformSpace.hausdorff
SetLike.coe
instSetLike
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_coe
uniformContinuous_singleton πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
uniformSpace
instSingleton
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_singleton
uniformContinuous_sup πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
instUniformSpaceProd
uniformSpace
instMax
β€”IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_coe
UniformContinuous.comp
UniformSpace.hausdorff.uniformContinuous_union
UniformContinuous.prodMap
uniformContinuous_coe
uniformContinuous_toCloseds πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds
uniformSpace
TopologicalSpace.Closeds.uniformSpace
toCloseds
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_toCloseds
uniformContinuous_toCompacts πŸ“–mathematicalβ€”UniformContinuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Compacts
uniformSpace
TopologicalSpace.Compacts.uniformSpace
toCompacts
β€”IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_toCompacts
uniformity_def πŸ“–mathematicalβ€”uniformity
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
uniformSpace
Filter.comap
Set
SetLike.coe
instSetLike
Filter.lift'
hausdorffEntourage
β€”β€”

TotallyBounded

Theorems

NameKindAssumesProvesValidatesDepends On
exists_prodMk_finset_mem_hausdorffEntourage πŸ“–mathematicalTotallyBounded
SetRel
Filter
Filter.instMembership
uniformity
Set
Set.instMembership
hausdorffEntourage
SetLike.coe
Finset
Finset.instSetLike
β€”symm_le_uniformity
CanLift.prf
Set.instCanLiftFinsetCoeFinite
Finset.coe_filter
Set.mem_iUnionβ‚‚
nhds_vietoris_le_nhds_hausdorff πŸ“–mathematicalTotallyBoundedFilter
Set
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
TopologicalSpace.vietoris
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
β€”nhds_eq_comap_uniformity
Filter.HasBasis.ge_iff
Filter.HasBasis.comap
Filter.HasBasis.uniformity_hausdorff
uniformity_hasBasis_open
refl_mem_uniformity
Filter.inter_mem
comp_open_symm_mem_uniformity_sets
exists_prodMk_finset_mem_hausdorffEntourage
Filter.mp_mem
Filter.eventually_all_finset
IsOpen.eventually_mem
TopologicalSpace.vietoris.isOpen_inter_nonempty_of_isOpen
UniformSpace.isOpen_ball
Filter.univ_mem'
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
subset_refl
Set.instReflSubset
SetRel.preimage_eq_image
SetRel.preimage_subset_preimage
SetRel.preimage_subset_preimage_left
SetRel.preimage_comp
IsOpen.mem_nhds
IsOpen.powerset_vietoris
IsOpen.relImage
SetRel.self_subset_image
powerset_hausdorff πŸ“–mathematicalTotallyBoundedSet
UniformSpace.hausdorff
Set.powerset
β€”Filter.HasBasis.totallyBounded_iff
Filter.HasBasis.uniformity_hausdorff
Filter.basis_sets
Set.iUnion_congr_Prop
Set.Finite.powerset
Set.mem_iUnionβ‚‚

UniformContinuous

Theorems

NameKindAssumesProvesValidatesDepends On
compacts_map πŸ“–mathematicalUniformContinuousTopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Compacts.uniformSpace
TopologicalSpace.Compacts.map
continuous
β€”continuous
IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.toIsUniformInducing
TopologicalSpace.Compacts.isUniformEmbedding_coe
comp
image_hausdorff
TopologicalSpace.Compacts.uniformContinuous_coe
image_hausdorff πŸ“–mathematicalUniformContinuousSet
UniformSpace.hausdorff
Set.image
β€”Filter.tendsto_lift'
Filter.mp_mem
Filter.mem_lift'
Filter.univ_mem'
HasSubset.Subset.trans
Set.instIsTransSubset
Set.mem_image_of_mem
nonemptyCompacts_map πŸ“–mathematicalUniformContinuousTopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.NonemptyCompacts.uniformSpace
TopologicalSpace.NonemptyCompacts.map
continuous
β€”continuous
IsUniformInducing.uniformContinuous_iff
IsUniformEmbedding.toIsUniformInducing
TopologicalSpace.NonemptyCompacts.isUniformEmbedding_coe
comp
image_hausdorff
TopologicalSpace.NonemptyCompacts.uniformContinuous_coe
sup_closeds πŸ“–mathematicalUniformContinuous
TopologicalSpace.Closeds
UniformSpace.toTopologicalSpace
TopologicalSpace.Closeds.uniformSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.Closeds.instCompleteLattice
β€”comp
TopologicalSpace.Closeds.uniformContinuous_sup
prodMk
sup_compacts πŸ“–mathematicalUniformContinuous
TopologicalSpace.Compacts
UniformSpace.toTopologicalSpace
TopologicalSpace.Compacts.uniformSpace
TopologicalSpace.Compacts.instMaxβ€”comp
TopologicalSpace.Compacts.uniformContinuous_sup
prodMk
sup_nonemptyCompacts πŸ“–mathematicalUniformContinuous
TopologicalSpace.NonemptyCompacts
UniformSpace.toTopologicalSpace
TopologicalSpace.NonemptyCompacts.uniformSpace
TopologicalSpace.NonemptyCompacts.instMaxβ€”comp
TopologicalSpace.NonemptyCompacts.uniformContinuous_sup
prodMk

UniformSpace

Definitions

NameCategoryTheorems
hausdorff πŸ“–CompOp
29 mathmath: TopologicalSpace.Closeds.uniformContinuous_closure, hausdorff.isClopen_singleton_empty, UniformContinuous.image_hausdorff, TopologicalSpace.Closeds.isUniformEmbedding_coe, hausdorff.isUniformEmbedding_singleton, TopologicalSpace.Closeds.continuous_closure, hausdorff.uniformContinuous_closure, hausdorff.isClosedEmbedding_singleton, hausdorff.nhds_closure, TopologicalSpace.NonemptyCompacts.uniformContinuous_coe, hausdorff.isOpen_inter_nonempty_of_isOpen, Filter.HasBasis.uniformity_hausdorff, TopologicalSpace.NonemptyCompacts.isUniformEmbedding_coe, hausdorff.isUniformInducing_closure, hausdorff.uniformContinuous_union, TopologicalSpace.Compacts.uniformContinuous_coe, TopologicalSpace.Compacts.isUniformEmbedding_coe, hausdorff.instCompactSpaceSet, hausdorff.continuous_closure, TotallyBounded.nhds_vietoris_le_nhds_hausdorff, hausdorff.instDiscreteUniformitySet, TotallyBounded.powerset_hausdorff, TopologicalSpace.Closeds.uniformContinuous_coe, TopologicalSpace.Closeds.isUniformInducing_closure, hausdorff.isClosed_powerset, IsUniformInducing.image_hausdorff, IsCompact.nhds_hausdorff_eq_nhds_vietoris, IsClosed.powerset_hausdorff, IsUniformEmbedding.image_hausdorff

UniformSpace.hausdorff

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_closure πŸ“–mathematicalβ€”Continuous
Set
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
closure
β€”UniformContinuous.continuous
uniformContinuous_closure
instCompactSpaceSet πŸ“–mathematicalβ€”CompactSpace
Set
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
β€”isCompact_iff_ultrafilter_le_nhds
Set.mem_univ
IsCompact.nhds_hausdorff_eq_nhds_vietoris
IsClosed.isCompact
isClosed_closure
le_imp_le_of_le_of_le
le_refl
Specializes.nhds_le_nhds
TopologicalSpace.vietoris.specializes_closure
Ultrafilter.le_nhds_lim
TopologicalSpace.vietoris.instCompactSpaceSet
instDiscreteUniformitySet πŸ“–mathematicalβ€”DiscreteUniformity
Set
UniformSpace.hausdorff
β€”discreteUniformity_iff_setRelId_mem_uniformity
hausdorffEntourage_id
Filter.mem_lift'
DiscreteUniformity.relId_mem_uniformity
isClopen_singleton_empty πŸ“–mathematicalβ€”IsClopen
Set
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
Set.instSingletonSet
Set.instEmptyCollection
β€”Set.powerset_empty
IsClosed.powerset_hausdorff
isClosed_empty
nhds_eq_uniformity
Filter.mp_mem
Filter.mem_lift'
Filter.univ_mem
Filter.univ_mem'
SetRel.image_empty_right
isClosedEmbedding_singleton πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
Set
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
Set.instSingletonSet
β€”IsUniformEmbedding.isEmbedding
isUniformEmbedding_singleton
isOpen_compl_iff
isOpen_iff_mem_nhds
Set.eq_empty_or_nonempty
isOpen_singleton_iff_nhds_eq_pure
IsClopen.isOpen
isClopen_singleton_empty
Filter.mem_pure
Set.Nonempty.exists_eq_singleton_or_nontrivial
Set.mem_range_self
t2_separation
T25Space.t2Space
T3Space.t25Space
instT3Space
UniformSpace.to_regularSpace
Filter.mp_mem
IsOpen.mem_nhds
IsOpen.inter
isOpen_inter_nonempty_of_isOpen
Filter.univ_mem'
Disjoint.notMem_of_mem_left
Set.singleton_inter_nonempty
Set.mem_setOf
isClosed_powerset πŸ“–mathematicalβ€”IsClosed
Set
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
Set.powerset
β€”IsClosed.powerset_hausdorff
isOpen_inter_nonempty_of_isOpen πŸ“–mathematicalIsOpen
UniformSpace.toTopologicalSpace
Set
UniformSpace.hausdorff
setOf
Set.Nonempty
Set.instInter
β€”isOpen_iff_mem_nhds
UniformSpace.mem_nhds_iff
IsOpen.mem_nhds_iff
Filter.mem_lift'
isUniformEmbedding_singleton πŸ“–mathematicalβ€”IsUniformEmbedding
Set
UniformSpace.hausdorff
Set.instSingletonSet
β€”Filter.comap_lift'_eq
Filter.lift'_id
Set.singleton_injective
isUniformInducing_closure πŸ“–mathematicalβ€”IsUniformInducing
Set
UniformSpace.hausdorff
closure
UniformSpace.toTopologicalSpace
β€”le_antisymm
Filter.HasBasis.le_basis_iff
Filter.HasBasis.comap
Filter.HasBasis.uniformity_hausdorff
Filter.basis_sets
comp_mem_uniformity_sets
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
subset_closure
subset_refl
Set.instReflSubset
SetRel.preimage_subset_preimage
UniformSpace.closure_subset_preimage
SetRel.preimage_subset_preimage_left
SetRel.preimage_comp
SetRel.image_subset_image
UniformSpace.closure_subset_image
SetRel.image_subset_image_left
SetRel.image_comp
Filter.map_le_iff_le_comap
uniformContinuous_closure
nhds_closure πŸ“–mathematicalβ€”nhds
Set
UniformSpace.toTopologicalSpace
UniformSpace.hausdorff
closure
β€”Topology.IsInducing.nhds_eq_comap
IsUniformInducing.isInducing
isUniformInducing_closure
closure_closure
uniformContinuous_closure πŸ“–mathematicalβ€”UniformContinuous
Set
UniformSpace.hausdorff
closure
UniformSpace.toTopologicalSpace
β€”Filter.HasBasis.tendsto_iff
Filter.HasBasis.uniformity_hausdorff
Filter.basis_sets
comp_mem_uniformity_sets
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
UniformSpace.closure_subset_preimage
subset_refl
Set.instReflSubset
SetRel.preimage_subset_preimage
subset_closure
SetRel.preimage_subset_preimage_left
SetRel.preimage_comp
UniformSpace.closure_subset_image
SetRel.image_subset_image
SetRel.image_subset_image_left
SetRel.image_comp
uniformContinuous_union πŸ“–mathematicalβ€”UniformContinuous
Set
instUniformSpaceProd
UniformSpace.hausdorff
Set.instUnion
β€”Filter.tendsto_lift'
Filter.mp_mem
entourageProd_mem_uniformity
Filter.mem_lift'
Filter.univ_mem'
union_mem_hausdorffEntourage

(root)

Definitions

NameCategoryTheorems
hausdorffEntourage πŸ“–CompOp
20 mathmath: isTrans_hausdorffEntourage, monotone_hausdorffEntourage, Filter.HasBasis.uniformity_nonemptyCompacts, TotallyBounded.exists_prodMk_finset_mem_hausdorffEntourage, Filter.HasBasis.uniformity_closeds, TopologicalSpace.Closeds.uniformity_def, TopologicalSpace.NonemptyCompacts.uniformity_def, TopologicalSpace.Compacts.uniformity_def, Filter.HasBasis.uniformity_compacts, Filter.HasBasis.uniformity_hausdorff, EMetric.mem_hausdorffEntourage_of_hausdorffEdist_lt, hausdorffEntourage_comp, inv_hausdorffEntourage, mem_hausdorffEntourage, isSymm_hausdorffEntourage, hausdorffEntourage_id, hausdorffEntourage_mono, isRefl_hausdorffEntourage, Metric.mem_hausdorffEntourage_of_hausdorffEDist_lt, singleton_mem_hausdorffEntourage

Theorems

NameKindAssumesProvesValidatesDepends On
hausdorffEntourage_comp πŸ“–mathematicalβ€”hausdorffEntourage
SetRel.comp
Set
β€”subset_antisymm
Set.instAntisymmSubset
Set.inter_subset_left
Set.inter_subset_right
mem_hausdorffEntourage
SetRel.preimage_comp
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
subset_refl
Set.instReflSubset
SetRel.preimage_subset_preimage
SetRel.image_comp
Mathlib.Tactic.GCongr.and_right_mono
SetRel.image_subset_image
subset_rfl
hausdorffEntourage_id πŸ“–mathematicalβ€”hausdorffEntourage
SetRel.id
Set
β€”SetRel.preimage_id
SetRel.image_id
Set.instReflSubset
Set.instAntisymmSubset
hausdorffEntourage_mono πŸ“–mathematicalSetRel
Set.instHasSubset
Set
hausdorffEntourage
β€”Set.setOf_subset_setOf_of_imp
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
subset_refl
Set.instReflSubset
SetRel.preimage_subset_preimage_left
SetRel.image_subset_image_left
inv_hausdorffEntourage πŸ“–mathematicalβ€”SetRel.inv
Set
hausdorffEntourage
β€”Set.ext
isRefl_hausdorffEntourage πŸ“–mathematicalβ€”SetRel.IsRefl
Set
hausdorffEntourage
β€”SetRel.self_subset_preimage
SetRel.self_subset_image
isSymm_hausdorffEntourage πŸ“–mathematicalβ€”SetRel.IsSymm
Set
hausdorffEntourage
β€”SetRel.inv_eq_self_iff
inv_hausdorffEntourage
SetRel.inv_eq_self
isTrans_hausdorffEntourage πŸ“–mathematicalβ€”SetRel.IsTrans
Set
hausdorffEntourage
β€”SetRel.isTrans_iff_comp_subset_self
hausdorffEntourage_comp
Mathlib.Tactic.GCongr.rel_imp_rel
Set.instIsTransSubset
hausdorffEntourage_mono
SetRel.comp_subset_self
subset_refl
Set.instReflSubset
mem_hausdorffEntourage πŸ“–mathematicalβ€”Set
SetRel
Set.instMembership
hausdorffEntourage
Set.instHasSubset
SetRel.preimage
SetRel.image
β€”β€”
monotone_hausdorffEntourage πŸ“–mathematicalβ€”Monotone
SetRel
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
hausdorffEntourage
β€”hausdorffEntourage_mono
singleton_mem_hausdorffEntourage πŸ“–mathematicalβ€”Set
SetRel
Set.instMembership
hausdorffEntourage
Set.instSingletonSet
β€”β€”
union_mem_hausdorffEntourage πŸ“–mathematicalSet
SetRel
Set.instMembership
hausdorffEntourage
Set.instUnionβ€”β€”

---

← Back to Index