Documentation

ProofsWithLean.Lib

def surjective (f : ) :
Equations
Instances For
    def injective (f : ) :
    Equations
    Instances For
      def croissante {α β : Type} [LE α] [LE β] (f : αβ) :
      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def decroissante {α β : Type} [LE α] [LE β] (f : αβ) :
          Equations
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def limite_suite (u : ) (l : ) :
              Equations
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  La suite u tends to +∞.

                  Equations
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      def est_borne_sup (M : ) (u : ) :
                      Equations
                      Instances For
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          def est_borne_inf (M : ) (u : ) :
                          Equations
                          Instances For
                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              def bounds_above (A : Set ) (x : ) :

                              Le réel x est un majorant de l'ensemble de réels A.

                              Equations
                              Instances For
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  def borne_sup (A : Set ) (x : ) :

                                  Le réel x est une borne supérieure de l'ensemble de réels A.

                                  Equations
                                  Instances For
                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      def minorant (A : Set ) (x : ) :

                                      Le réel x est un minorant de l'ensemble de réels A.

                                      Equations
                                      Instances For
                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          def borne_inf (A : Set ) (x : ) :

                                          Le réel x est une borne inférieure de l'ensemble de réels A.

                                          Equations
                                          Instances For
                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              theorem m154.inferieur_ssi {x y : } :
                                              x y 0 y - x
                                              theorem m154.pos_pos {x y : } (hx : 0 x) (hy : 0 y) :
                                              0 x * y
                                              theorem m154.neg_neg {x y : } (hx : x 0) (hy : y 0) :
                                              0 x * y
                                              theorem m154.inferieur_ssi' {x y : } :
                                              x y x - y 0
                                              theorem m154.inferieur_diff_pos {x y : } :
                                              x y0 y - x
                                              theorem m154.diff_pos_inferieur {x y : } :
                                              0 y - xx y
                                              theorem m154.inferieur_diff_neg {x y : } :
                                              x yx - y 0
                                              theorem m154.diff_neg_inferieur {x y : } :
                                              x - y 0x y
                                              theorem m154.carre_pos {a : } :
                                              a > 0a ^ 2 > 0
                                              theorem divise_refl (a : ) :
                                              a a
                                              axiom divise_gcd_ssi {a b c : } :
                                              c a.gcd b c a c b
                                              axiom divise_si_divise_gcd {a b c : } :
                                              c a.gcd bc a c b
                                              axiom divise_si_divise_left {a b c : } :
                                              c a.gcd bc a
                                              axiom divise_si_divise_right {a b c : } :
                                              c a.gcd bc b
                                              axiom divise_gcd_si {a b c : } :
                                              c ac bc a.gcd b
                                              axiom gcd_divise_left {a b : } :
                                              a.gcd b a
                                              axiom gcd_divise_right {a b : } :
                                              a.gcd b b
                                              theorem divise_antisym {a b : } :
                                              a bb aa = b
                                              theorem divise_def (a b : ) :
                                              a b ∃ (k : ), b = a * k
                                              class HasParity (α : Type) :
                                              • isEven : Prédicat sur α
                                              • isOdd : Prédicat sur α
                                              Instances
                                                Equations
                                                Equations
                                                theorem pair_ou_impair (n : ) :
                                                theorem abs_inferieur_ssi {x y : } :
                                                |x| y -y x x y
                                                theorem abs_diff (x y : ) :
                                                |x - y| = |y - x|
                                                theorem pos_abs {x : } :
                                                |x| > 0 x 0
                                                theorem non_zero_abs_pos {a : } :
                                                a 0|a| > 0
                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    theorem superieur_max_ssi {α : Type u_1} [LinearOrder α] (p q r : α) :
                                                    r max p q r p r q
                                                    theorem inferieur_max_gauche {α : Type u_1} [LinearOrder α] (p q : α) :
                                                    p max p q
                                                    theorem inferieur_max_droite {α : Type u_1} [LinearOrder α] (p q : α) :
                                                    q max p q
                                                    theorem egal_si_abs_diff_neg {a b : } :
                                                    |a - b| 0a = b
                                                    theorem egal_si_abs_eps (x y : ) :
                                                    (∀ ε > 0, |x - y| ε)x = y
                                                    theorem abs_plus (x y : ) :
                                                    |x + y| |x| + |y|
                                                    theorem ineg_triangle (x y z : ) :
                                                    |x - y| |x - z| + |z - y|
                                                    theorem ineg_triangle' (x y z : ) :
                                                    |x - y| |x - z| + |y - z|
                                                    theorem ineg_triangle'' (x y z : ) :
                                                    |x - y| |z - x| + |z - y|
                                                    theorem m154.unicite_limite {u : } {l l' : } :
                                                    (u tends to l)(u tends to l')l = l'
                                                    theorem M154.inferieur_mul_droite {a b c : } (hc : 0 c) (hab : a b) :
                                                    a * c b * c
                                                    theorem M154.inferieur_mul_gauche {a b c : } (hc : 0 c) (hab : a b) :
                                                    c * a c * b
                                                    theorem M154.inferieur_add_gauche {a b c : } :
                                                    a bc + a c + b
                                                    theorem M154.inferieur_add_droite {a b c : } :
                                                    a ba + c b + c
                                                    theorem M154.inferieur_simpl_gauche {a b c : } :
                                                    c + a c + ba b
                                                    theorem M154.inferieur_simpl_droite {a b c : } :
                                                    a + c b + ca b
                                                    def extraction (φ : ) :
                                                    Equations
                                                    Instances For
                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        def suite_cauchy (u : ) :
                                                        Equations
                                                        Instances For
                                                          def valeur_adherence (u : ) (a : ) :

                                                          Un réel a est valeur d'adhérence d'une suite u s'il existe une suite extraite de u qui tends to a.

                                                          Equations
                                                          Instances For
                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                theorem extraction_superieur_id {φ : } :
                                                                φ is an extraction∀ (n : ), n φ n

                                                                Toute extraction est supérieure à l'identité.

                                                                theorem extraction_machine (ψ : ) ( : ∀ (n : ), ψ n n) :
                                                                ∃ (f : ), ψ f is an extraction ∀ (n : ), f n n
                                                                def Verbose.English.Subset {α : Type u_2} (s₁ s₂ : Set α) :
                                                                Equations
                                                                Instances For
                                                                  @[instance 10000]
                                                                  instance Verbose.English.hasSubset {α : Type u_2} :
                                                                  Equations
                                                                  theorem le_le_of_abs_le' {α : Type u_2} [LinearOrder α] [AddCommGroup α] [IsOrderedAddMonoid α] {a b : α} :
                                                                  |a| ba b -b a
                                                                  theorem le_of_abs_le' {α : Type u_2} [LinearOrder α] [AddCommGroup α] [IsOrderedAddMonoid α] {a b : α} :
                                                                  |a| b-b a
                                                                  theorem le_antisymm' {α : Type u_2} [PartialOrder α] {a b : α} (h : b a) (h' : a b) :
                                                                  a = b
                                                                  theorem ex_mul_of_dvd {R : Type u_2} [CommSemiring R] {a b : R} (h : a b) :
                                                                  ∃ (k : R), b = k * a
                                                                  theorem ex_mul_of_dvd' {a b : } (h : ∃ (k : ), b = k * a) :
                                                                  a b
                                                                  Equations
                                                                  Instances For
                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For
                                                                      Equations
                                                                      • One or more equations did not get rendered due to their size.
                                                                      Instances For
                                                                        Equations
                                                                        • One or more equations did not get rendered due to their size.
                                                                        Instances For
                                                                          Equations
                                                                          • One or more equations did not get rendered due to their size.
                                                                          Instances For
                                                                            Equations
                                                                            • One or more equations did not get rendered due to their size.
                                                                            Instances For
                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For
                                                                                Equations
                                                                                Instances For