Documentation

Mathlib.Algebra.Category.Grp.Adjunctions

Adjunctions regarding the category of (abelian) groups #

This file contains construction of basic adjunctions concerning the category of groups and the category of abelian groups.

Main definitions #

Main statements #

The free functor Type u ⥤ AddCommGroup sending a type X to the free abelian group with generators x : X.

Equations
    Instances For

      The free-forgetful adjunction for abelian groups.

      Equations
        Instances For

          The free functor Type u ⥤ Group sending a type X to the free group with generators x : X.

          Equations
            Instances For

              The free-forgetful adjunction for groups.

              Equations
                Instances For

                  The abelianization functor GroupCommGroup sending a group G to its abelianization Gᵃᵇ.

                  Equations
                    Instances For

                      The abelianization-forgetful adjunction from Group to CommGroup.

                      Equations
                        Instances For

                          The functor taking a monoid to its subgroup of units.

                          Equations
                            Instances For
                              @[simp]
                              theorem MonCat.val_units_map_hom_apply {X✝ Y✝ : MonCat} (f : X✝ Y✝) (u : (↑X✝)ˣ) :
                              ((GrpCat.Hom.hom (units.map f)) u) = (Hom.hom f) u
                              @[simp]
                              theorem MonCat.units_obj_coe (R : MonCat) :
                              (units.obj R) = (↑R)ˣ
                              @[simp]
                              theorem MonCat.val_inv_units_map_hom_apply {X✝ Y✝ : MonCat} (f : X✝ Y✝) (u : (↑X✝)ˣ) :

                              The forgetful-units adjunction between GrpCat and MonCat.

                              Equations
                                Instances For

                                  The functor taking a monoid to its subgroup of units.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem CommMonCat.val_units_map_hom_apply {X✝ Y✝ : CommMonCat} (f : X✝ Y✝) (u : (↑X✝)ˣ) :
                                      ((CommGrpCat.Hom.hom (units.map f)) u) = (Hom.hom f) u
                                      @[simp]
                                      theorem CommMonCat.val_inv_units_map_hom_apply {X✝ Y✝ : CommMonCat} (f : X✝ Y✝) (u : (↑X✝)ˣ) :
                                      @[simp]
                                      theorem CommMonCat.units_obj_coe (R : CommMonCat) :
                                      (units.obj R) = (↑R)ˣ