Documentation

Mathlib.Algebra.Category.ModuleCat.Kernels

The concrete (co)kernels in the category of modules are (co)kernels in the categorical sense. #

The kernel cone induced by the concrete kernel.

Equations
    Instances For

      The kernel of a linear map is a kernel in the categorical sense.

      Equations
        Instances For
          noncomputable def ModuleCat.isLimitKernelFork {R : Type u} [Ring R] {M N P : ModuleCat R} (f : M N) (g : N P) (H : Function.Exact (Hom.hom f) (Hom.hom g)) (H₂ : Function.Injective (Hom.hom f)) :

          Construct an IsLimit structure of kernels given Function.Exact.

          Equations
            Instances For

              The cokernel cocone induced by the projection onto the quotient.

              Equations
                Instances For

                  The projection onto the quotient is a cokernel in the categorical sense.

                  Equations
                    Instances For

                      Construct an IsColimit structure of cokernels given Function.Exact.

                      Equations
                        Instances For

                          The category of R-modules has kernels, given by the inclusion of the kernel submodule.

                          The category of R-modules has cokernels, given by the projection onto the quotient.

                          noncomputable def ModuleCat.kernelIsoKer {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :

                          The categorical kernel of a morphism in ModuleCat agrees with the usual module-theoretical kernel.

                          Equations
                            Instances For
                              noncomputable def ModuleCat.cokernelIsoRangeQuotient {R : Type u} [Ring R] {G H : ModuleCat R} (f : G H) :

                              The categorical cokernel of a morphism in ModuleCat agrees with the usual module-theoretical quotient.

                              Equations
                                Instances For