The concrete (co)kernels in the category of modules are (co)kernels in the categorical sense. #
The kernel cone induced by the concrete kernel.
Equations
Instances For
The kernel of a linear map is a kernel in the categorical sense.
Equations
Instances For
noncomputable def
ModuleCat.isLimitKernelFork
{R : Type u}
[Ring R]
{M N P : ModuleCat R}
(f : M ⟶ N)
(g : N ⟶ P)
(H : Function.Exact ⇑(Hom.hom f) ⇑(Hom.hom g))
(H₂ : Function.Injective ⇑(Hom.hom f))
:
Construct an IsLimit structure of kernels given Function.Exact.
Equations
Instances For
The cokernel cocone induced by the projection onto the quotient.
Equations
Instances For
The projection onto the quotient is a cokernel in the categorical sense.
Equations
Instances For
noncomputable def
ModuleCat.isColimitCokernelCofork
{R : Type u}
[Ring R]
{M N P : ModuleCat R}
(f : M ⟶ N)
(g : N ⟶ P)
(H : Function.Exact ⇑(Hom.hom f) ⇑(Hom.hom g))
(H₂ : Function.Surjective ⇑(Hom.hom g))
:
Construct an IsColimit structure of cokernels given Function.Exact.
Equations
Instances For
The category of R-modules has kernels, given by the inclusion of the kernel submodule.
The category of R-modules has cokernels, given by the projection onto the quotient.
@[simp]
@[simp]
theorem
ModuleCat.kernelIsoKer_hom_ker_subtype
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
:
theorem
ModuleCat.kernelIsoKer_hom_ker_subtype_apply
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
(x : ↑(CategoryTheory.Limits.kernel f))
:
@[simp]
theorem
ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
:
theorem
ModuleCat.cokernel_π_cokernelIsoRangeQuotient_hom_apply
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
(x : ↑H)
:
@[simp]
theorem
ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
:
theorem
ModuleCat.range_mkQ_cokernelIsoRangeQuotient_inv_apply
{R : Type u}
[Ring R]
{G H : ModuleCat R}
(f : G ⟶ H)
(x : ↑H)
:
theorem
ModuleCat.cokernel_π_ext
{R : Type u}
[Ring R]
{M N : ModuleCat R}
(f : M ⟶ N)
{x y : ↑N}
(m : ↑M)
(w : x = y + (CategoryTheory.ConcreteCategory.hom f) m)
: