Limits in categories of sheaves of modules #
In this file, it is shown that under suitable assumptions,
limits exist in the category SheafOfModules R.
TODO #
- do the same for colimits (which requires constructing the associated sheaf of modules functor)
theorem
PresheafOfModules.isSheaf_of_isLimit
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type uโ}
[CategoryTheory.Category.{vโ, uโ} D]
{R : CategoryTheory.Functor Cแตแต RingCat}
{F : CategoryTheory.Functor D (PresheafOfModules R)}
[โ (X : Cแตแต),
Small.{v, max uโ v} โ((F.comp (evaluation R X)).comp (CategoryTheory.forget (ModuleCat โ(R.obj X)))).sections]
{c : CategoryTheory.Limits.Cone F}
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrpCat]
(hc : CategoryTheory.Limits.IsLimit c)
(hF : โ (j : D), CategoryTheory.Presheaf.IsSheaf J (F.obj j).presheaf)
:
instance
SheafOfModules.instSmallElemForallObjCompModuleCatCarrierOppositeRingCatValPresheafOfModulesForgetEvaluationForgetLinearMapIdCarrierSections
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type uโ}
[CategoryTheory.Category.{vโ, uโ} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[โ (X : Cแตแต),
Small.{v, max uโ v} โ((F.comp (evaluation R X)).comp (CategoryTheory.forget (ModuleCat โ(R.val.obj X)))).sections]
(X : Cแตแต)
:
Small.{v, max uโ v}
โ(((F.comp (forget R)).comp (PresheafOfModules.evaluation R.val X)).comp
(CategoryTheory.forget (ModuleCat โ(R.val.obj X)))).sections
noncomputable instance
SheafOfModules.createsLimit
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type uโ}
[CategoryTheory.Category.{vโ, uโ} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[โ (X : Cแตแต),
Small.{v, max uโ v} โ((F.comp (evaluation R X)).comp (CategoryTheory.forget (ModuleCat โ(R.val.obj X)))).sections]
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrpCat]
:
Equations
instance
SheafOfModules.hasLimit
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type uโ}
[CategoryTheory.Category.{vโ, uโ} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[โ (X : Cแตแต),
Small.{v, max uโ v} โ((F.comp (evaluation R X)).comp (CategoryTheory.forget (ModuleCat โ(R.val.obj X)))).sections]
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrpCat]
:
instance
SheafOfModules.evaluationPreservesLimit
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
{D : Type uโ}
[CategoryTheory.Category.{vโ, uโ} D]
{R : CategoryTheory.Sheaf J RingCat}
(F : CategoryTheory.Functor D (SheafOfModules R))
[โ (X : Cแตแต),
Small.{v, max uโ v} โ((F.comp (evaluation R X)).comp (CategoryTheory.forget (ModuleCat โ(R.val.obj X)))).sections]
[CategoryTheory.Limits.HasLimitsOfShape D AddCommGrpCat]
(X : Cแตแต)
:
instance
SheafOfModules.hasLimitsOfShape
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
(D : Type uโ)
[CategoryTheory.Category.{vโ, uโ} D]
(R : CategoryTheory.Sheaf J RingCat)
[Small.{v, uโ} D]
:
instance
SheafOfModules.evaluationPreservesLimitsOfShape
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
(D : Type uโ)
[CategoryTheory.Category.{vโ, uโ} D]
(R : CategoryTheory.Sheaf J RingCat)
[Small.{v, uโ} D]
(X : Cแตแต)
:
instance
SheafOfModules.forgetPreservesLimitsOfShape
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
(D : Type uโ)
[CategoryTheory.Category.{vโ, uโ} D]
(R : CategoryTheory.Sheaf J RingCat)
[Small.{v, uโ} D]
:
instance
SheafOfModules.Finite.hasFiniteLimits
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
:
instance
SheafOfModules.Finite.evaluationPreservesFiniteLimits
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
(X : Cแตแต)
:
instance
SheafOfModules.evaluationPreservesLimitsOfSize
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
(X : Cแตแต)
:
instance
SheafOfModules.forgetPreservesLimitsOfSize
{C : Type uโ}
[CategoryTheory.Category.{vโ, uโ} C]
{J : CategoryTheory.GrothendieckTopology C}
(R : CategoryTheory.Sheaf J RingCat)
: