Documentation

Mathlib.Algebra.Homology.DerivedCategory.Ext.Linear

Ext-modules in linear categories #

In this file, we show that if C is an R-linear abelian category, then there is an R-module structure on the groups Ext X Y n for X and Y in C and n : ℕ.

noncomputable instance CategoryTheory.Abelian.Ext.instModule {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} {n : } :
Module R (Ext X Y n)
Equations
    theorem CategoryTheory.Abelian.Ext.smul_eq_comp_mk₀ {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} {n : } (x : Ext X Y n) (r : R) :
    r x = x.comp (mk₀ (r CategoryStruct.id Y))
    @[simp]
    theorem CategoryTheory.Abelian.Ext.smul_hom {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} {n : } (x : Ext X Y n) (r : R) [HasDerivedCategory C] :
    (r x).hom = r x.hom
    @[simp]
    theorem CategoryTheory.Abelian.Ext.comp_smul {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y Z : C} {a b : } (α : Ext X Y a) (β : Ext Y Z b) {c : } (h : a + b = c) (r : R) :
    α.comp (r β) h = r α.comp β h
    @[simp]
    theorem CategoryTheory.Abelian.Ext.smul_comp {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y Z : C} {a b : } (α : Ext X Y a) (β : Ext Y Z b) {c : } (h : a + b = c) (r : R) :
    (r α).comp β h = r α.comp β h

    When an instance of [HasDerivedCategory.{w'} C] is available, this is the R-linear equivalence between Ext.{w} X Y n and a type of morphisms in the derived category of the R-linear abelian category C.

    Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Abelian.Ext.homLinearEquiv_apply {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} {n : } [HasDerivedCategory C] (a✝ : Ext X Y n) :
        theorem CategoryTheory.Abelian.Ext.mk₀_smul {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} (r : R) (f : X Y) :
        mk₀ (r f) = r mk₀ f
        noncomputable def CategoryTheory.Abelian.Ext.linearEquiv₀ {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} :
        Ext X Y 0 ≃ₗ[R] X Y

        The linear equivalence Ext X Y 0 ≃ₜ[R] (X ⟶ Y).

        Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Abelian.Ext.linearEquiv₀_symm_apply {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} (a✝ : X Y) :
            @[simp]
            theorem CategoryTheory.Abelian.Ext.mk₀_linearEquiv₀_apply {R : Type t} [Ring R] {C : Type u} [Category.{v, u} C] [Abelian C] [Linear R C] [HasExt C] {X Y : C} (f : Ext X Y 0) :
            noncomputable def CategoryTheory.Abelian.Ext.bilinearCompOfLinear {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (R : Type t) [CommRing R] [Linear R C] (X Y Z : C) (a b c : ) (h : a + b = c) :
            Ext X Y a →ₗ[R] Ext Y Z b →ₗ[R] Ext X Z c

            The composition of Ext, as a bilinear map.

            Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Abelian.Ext.bilinearCompOfLinear_apply_apply {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] (R : Type t) [CommRing R] [Linear R C] (X Y Z : C) (a b c : ) (h : a + b = c) (α : Ext X Y a) (β : Ext Y Z b) :
                ((bilinearCompOfLinear R X Y Z a b c h) α) β = α.comp β h
                @[reducible, inline]
                noncomputable abbrev CategoryTheory.Abelian.Ext.postcompOfLinear {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {Y Z : C} {n : } (β : Ext Y Z n) (R : Type t) [CommRing R] [Linear R C] (X : C) {a b : } (h : a + n = b) :
                Ext X Y a →ₗ[R] Ext X Z b

                The postcomposition Ext X Y a →ₗ[R] Ext X Z b with β : Ext Y Z n when a + n = b.

                Equations
                  Instances For
                    @[reducible, inline]
                    noncomputable abbrev CategoryTheory.Abelian.Ext.precompOfLinear {C : Type u} [Category.{v, u} C] [Abelian C] [HasExt C] {X Y : C} {n : } (α : Ext X Y n) (R : Type t) [CommRing R] [Linear R C] (Z : C) {a b : } (h : n + a = b) :
                    Ext Y Z a →ₗ[R] Ext X Z b

                    The precomposition Ext Y Z a →ₗ[R] Ext X Z b with α : Ext X Y n when n + a = b.

                    Equations
                      Instances For