Documentation

Mathlib.Algebra.Lie.Nilpotent

Nilpotent Lie algebras #

Like groups, Lie algebras admit a natural concept of nilpotency. More generally, any Lie module carries a natural concept of nilpotency. We define these here via the lower central series.

Main definitions #

Tags #

lie algebra, lower central series, nilpotent, max nilpotent ideal

def LieSubmodule.lcs {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) :
LieSubmodule R L M β†’ LieSubmodule R L M

A generalisation of the lower central series. The zeroth term is a specified Lie submodule of a Lie module. In the case when we specify the top ideal ⊀ of the Lie algebra, regarded as a Lie module over itself, we get the usual lower central series of a Lie algebra.

It can be more convenient to work with this generalisation when considering the lower central series of a Lie submodule, regarded as a Lie module in its own right, since it provides a type-theoretic expression of the fact that the terms of the Lie submodule's lower central series are also Lie submodules of the enclosing Lie module.

See also LieSubmodule.lowerCentralSeries_eq_lcs_comap and LieSubmodule.lowerCentralSeries_map_eq_lcs below, as well as LieSubmodule.ucs.

Equations
    Instances For
      @[simp]
      theorem LieSubmodule.lcs_zero {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) :
      lcs 0 N = N
      @[simp]
      theorem LieSubmodule.lcs_succ {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) (N : LieSubmodule R L M) :
      @[simp]
      theorem LieSubmodule.lcs_sup {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N₁ Nβ‚‚ : LieSubmodule R L M} {k : β„•} :
      lcs k (N₁ βŠ” Nβ‚‚) = lcs k N₁ βŠ” lcs k Nβ‚‚
      def LieModule.lowerCentralSeries (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) :

      The lower central series of Lie submodules of a Lie module.

      Equations
        Instances For
          theorem LieSubmodule.lcs_le_self {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) (N : LieSubmodule R L M) :
          lcs k N ≀ N
          theorem LieSubmodule.lowerCentralSeries_map_eq_lcs {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) (N : LieSubmodule R L M) [LieModule R L M] :
          map N.incl (LieModule.lowerCentralSeries R L (β†₯N) k) = lcs k N
          theorem LieModule.iterate_toEnd_mem_lowerCentralSeries (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) (m : M) (k : β„•) :
          (⇑((toEnd R L M) x))^[k] m ∈ lowerCentralSeries R L M k
          theorem LieModule.iterate_toEnd_mem_lowerCentralSeriesβ‚‚ (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x y : L) (m : M) (k : β„•) :
          (⇑((toEnd R L M) x βˆ˜β‚— (toEnd R L M) y))^[k] m ∈ lowerCentralSeries R L M (2 * k)
          theorem LieModule.map_lowerCentralSeries_le {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] [LieModule R L M] (f : M →ₗ⁅R,L⁆ Mβ‚‚) :
          theorem LieModule.map_lowerCentralSeries_eq {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) {Mβ‚‚ : Type w₁} [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule L Mβ‚‚] [LieModule R L Mβ‚‚] [LieModule R L M] {f : M →ₗ⁅R,L⁆ Mβ‚‚} (hf : Function.Surjective ⇑f) :

          A Lie module is nilpotent if its lower central series reaches 0 (in a finite number of steps).

          Instances
            theorem LieModule.IsNilpotent.nilpotent (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [IsNilpotent L M] :
            βˆƒ (k : β„•), lowerCentralSeries R L M k = βŠ₯
            theorem LieModule.IsNilpotent.mk {R : Type u} {L : Type v} (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {k : β„•} (h : lowerCentralSeries R L M k = βŠ₯) :
            @[instance 100]
            instance LieModule.instIsNilpotentSup (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (M₁ Mβ‚‚ : LieSubmodule R L M) [IsNilpotent L β†₯M₁] [IsNilpotent L β†₯Mβ‚‚] :
            IsNilpotent L β†₯(M₁ βŠ” Mβ‚‚)
            theorem LieModule.exists_forall_pow_toEnd_eq_zero (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [IsNilpotent L M] :
            βˆƒ (k : β„•), βˆ€ (x : L), (toEnd R L M) x ^ k = 0
            @[simp]
            theorem LieModule.maxGenEigenSpace_toEnd_eq_top (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [IsNilpotent L M] (x : L) :
            theorem LieModule.nilpotentOfNilpotentQuotient (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {N : LieSubmodule R L M} (h₁ : N ≀ maxTrivSubmodule R L M) (hβ‚‚ : IsNilpotent L (M β§Έ N)) :

            If the quotient of a Lie module M by a Lie submodule on which the Lie algebra acts trivially is nilpotent then M is nilpotent.

            This is essentially the Lie module equivalent of the fact that a central extension of nilpotent Lie algebras is nilpotent. See LieAlgebra.nilpotent_of_nilpotent_quotient below for the corresponding result for Lie algebras.

            theorem LieModule.isNilpotent_quotient_iff (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieModule R L M] :
            IsNilpotent L (M β§Έ N) ↔ βˆƒ (k : β„•), lowerCentralSeries R L M k ≀ N
            theorem LieModule.iInf_lcs_le_of_isNilpotent_quot (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieModule R L M] (h : IsNilpotent L (M β§Έ N)) :
            β¨… (k : β„•), lowerCentralSeries R L M k ≀ N
            noncomputable def LieModule.nilpotencyLength (L : Type v) (M : Type w) [LieRing L] [AddCommGroup M] [LieRingModule L M] :

            Given a nilpotent Lie module M with lower central series M = Cβ‚€ β‰₯ C₁ β‰₯ β‹― β‰₯ Cβ‚– = βŠ₯, this is the natural number k (the number of inclusions).

            For a non-nilpotent module, we use the junk value 0.

            Equations
              Instances For
                noncomputable def LieModule.lowerCentralSeriesLast (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

                Given a non-trivial nilpotent Lie module M with lower central series M = Cβ‚€ β‰₯ C₁ β‰₯ β‹― β‰₯ Cβ‚– = βŠ₯, this is the k-1th term in the lower central series (the last non-trivial term).

                For a trivial or non-nilpotent module, this is the bottom submodule, βŠ₯.

                Equations
                  Instances For

                    For a nilpotent Lie module M of a Lie algebra L, the first term in the lower central series of M contains a non-zero element on which L acts trivially unless the entire action is trivial.

                    Taking M = L, this provides a useful characterisation of Abelian-ness for nilpotent Lie algebras.

                    @[simp]
                    theorem LieModule.coe_lcs_range_toEnd_eq (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (k : β„•) :
                    ↑(lowerCentralSeries R (β†₯(toEnd R L M).range) M k) = ↑(lowerCentralSeries R L M k)
                    @[simp]
                    theorem LieModule.isNilpotent_range_toEnd_iff (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
                    IsNilpotent (β†₯(toEnd R L M).range) M ↔ IsNilpotent L M
                    def LieSubmodule.ucs {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (k : β„•) :
                    LieSubmodule R L M β†’ LieSubmodule R L M

                    The upper (aka ascending) central series.

                    See also LieSubmodule.lcs.

                    Equations
                      Instances For
                        @[simp]
                        theorem LieSubmodule.ucs_zero {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieModule R L M] :
                        ucs 0 N = N
                        @[simp]
                        theorem LieSubmodule.ucs_succ {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieModule R L M] (k : β„•) :
                        ucs (k + 1) N = (ucs k N).normalizer
                        theorem LieSubmodule.ucs_add {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieModule R L M] (k l : β„•) :
                        ucs (k + l) N = ucs k (ucs l N)
                        theorem LieSubmodule.ucs_mono {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N₁ Nβ‚‚ : LieSubmodule R L M} [LieModule R L M] (k : β„•) (h : N₁ ≀ Nβ‚‚) :
                        ucs k N₁ ≀ ucs k Nβ‚‚
                        theorem LieSubmodule.ucs_eq_self_of_normalizer_eq_self {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N₁ : LieSubmodule R L M} [LieModule R L M] (h : N₁.normalizer = N₁) (k : β„•) :
                        ucs k N₁ = N₁
                        theorem LieSubmodule.ucs_le_of_normalizer_eq_self {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N₁ : LieSubmodule R L M} [LieModule R L M] (h : N₁.normalizer = N₁) (k : β„•) :
                        ucs k βŠ₯ ≀ N₁

                        If a Lie module M contains a self-normalizing Lie submodule N, then all terms of the upper central series of M are contained in N.

                        An important instance of this situation arises from a Cartan subalgebra H βŠ† L with the roles of L, M, N played by H, L, H, respectively.

                        theorem LieSubmodule.lcs_add_le_iff {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N₁ Nβ‚‚ : LieSubmodule R L M} [LieModule R L M] (l k : β„•) :
                        lcs (l + k) N₁ ≀ Nβ‚‚ ↔ lcs l N₁ ≀ ucs k Nβ‚‚
                        theorem LieSubmodule.lcs_le_iff {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] {N₁ Nβ‚‚ : LieSubmodule R L M} [LieModule R L M] (k : β„•) :
                        lcs k N₁ ≀ Nβ‚‚ ↔ N₁ ≀ ucs k Nβ‚‚
                        theorem LieSubmodule.gc_lcs_ucs {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (k : β„•) :
                        GaloisConnection (fun (N : LieSubmodule R L M) => lcs k N) fun (N : LieSubmodule R L M) => ucs k N
                        theorem LieSubmodule.ucs_comap_incl {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] (N : LieSubmodule R L M) [LieModule R L M] (k : β„•) :
                        theorem lieModule_lcs_map_le {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {Lβ‚‚ : Type u_1} {Mβ‚‚ : Type u_2} [LieRing Lβ‚‚] [LieAlgebra R Lβ‚‚] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule Lβ‚‚ Mβ‚‚] {f : L →ₗ⁅R⁆ Lβ‚‚} {g : M β†’β‚—[R] Mβ‚‚} (hfg : βˆ€ (x : L) (m : M), ⁅f x, g m⁆ = g ⁅x, m⁆) (k : β„•) :
                        theorem Function.Injective.lieModuleIsNilpotent {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {Lβ‚‚ : Type u_1} {Mβ‚‚ : Type u_2} [LieRing Lβ‚‚] [LieAlgebra R Lβ‚‚] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule Lβ‚‚ Mβ‚‚] {f : L →ₗ⁅R⁆ Lβ‚‚} {g : M β†’β‚—[R] Mβ‚‚} (hfg : βˆ€ (x : L) (m : M), ⁅f x, g m⁆ = g ⁅x, m⁆) [LieModule R Lβ‚‚ Mβ‚‚] (hg_inj : Injective ⇑g) [LieModule.IsNilpotent Lβ‚‚ Mβ‚‚] :
                        theorem Function.Surjective.lieModule_lcs_map_eq {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {Lβ‚‚ : Type u_1} {Mβ‚‚ : Type u_2} [LieRing Lβ‚‚] [LieAlgebra R Lβ‚‚] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule Lβ‚‚ Mβ‚‚] {f : L →ₗ⁅R⁆ Lβ‚‚} {g : M β†’β‚—[R] Mβ‚‚} (hfg : βˆ€ (x : L) (m : M), ⁅f x, g m⁆ = g ⁅x, m⁆) [LieModule R Lβ‚‚ Mβ‚‚] (hf_surj : Surjective ⇑f) (hg_surj : Surjective ⇑g) (k : β„•) :
                        Submodule.map g ↑(LieModule.lowerCentralSeries R L M k) = ↑(LieModule.lowerCentralSeries R Lβ‚‚ Mβ‚‚ k)
                        theorem Function.Surjective.lieModuleIsNilpotent {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {Lβ‚‚ : Type u_1} {Mβ‚‚ : Type u_2} [LieRing Lβ‚‚] [LieAlgebra R Lβ‚‚] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule Lβ‚‚ Mβ‚‚] {f : L →ₗ⁅R⁆ Lβ‚‚} {g : M β†’β‚—[R] Mβ‚‚} (hfg : βˆ€ (x : L) (m : M), ⁅f x, g m⁆ = g ⁅x, m⁆) [LieModule R Lβ‚‚ Mβ‚‚] (hf_surj : Surjective ⇑f) (hg_surj : Surjective ⇑g) [LieModule.IsNilpotent L M] :
                        LieModule.IsNilpotent Lβ‚‚ Mβ‚‚
                        theorem Equiv.lieModule_isNilpotent_iff {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] {Lβ‚‚ : Type u_1} {Mβ‚‚ : Type u_2} [LieRing Lβ‚‚] [LieAlgebra R Lβ‚‚] [AddCommGroup Mβ‚‚] [Module R Mβ‚‚] [LieRingModule Lβ‚‚ Mβ‚‚] [LieModule R Lβ‚‚ Mβ‚‚] (f : L ≃ₗ⁅R⁆ Lβ‚‚) (g : M ≃ₗ[R] Mβ‚‚) (hfg : βˆ€ (x : L) (m : M), ⁅f x, g m⁆ = g ⁅x, m⁆) :
                        theorem LieModule.isNilpotent_of_le (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (M₁ Mβ‚‚ : LieSubmodule R L M) (h₁ : M₁ ≀ Mβ‚‚) [IsNilpotent L β†₯Mβ‚‚] :
                        IsNilpotent L β†₯M₁
                        def LieModule.maxNilpotentSubmodule (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

                        The max nilpotent submodule is the sSup of all nilpotent submodules.

                        Equations
                          Instances For
                            @[reducible, inline]
                            abbrev LieRing.IsNilpotent (L : Type v) [LieRing L] :

                            We say a Lie ring is nilpotent when it is nilpotent as a Lie module over itself via the adjoint representation.

                            Equations
                              Instances For
                                theorem LieAlgebra.nilpotent_ad_of_nilpotent_algebra (R : Type u) (L : Type v) [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing.IsNilpotent L] :
                                βˆƒ (k : β„•), βˆ€ (x : L), (ad R L) x ^ k = 0
                                theorem coe_lowerCentralSeries_ideal_quot_eq {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {I : LieIdeal R L} (k : β„•) :

                                Given an ideal I of a Lie algebra L, the lower central series of L β§Έ I is the same whether we regard L β§Έ I as an L module or an L β§Έ I module.

                                TODO: This result obviously generalises but the generalisation requires the missing definition of morphisms between Lie modules over different Lie algebras.

                                theorem LieModule.coe_lowerCentralSeries_ideal_le {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {I : LieIdeal R L} (k : β„•) :
                                ↑(lowerCentralSeries R (β†₯I) (β†₯I) k) ≀ ↑(lowerCentralSeries R L (β†₯I) k)

                                Note that the below inequality can be strict. For example the ideal of strictly-upper-triangular 2x2 matrices inside the Lie algebra of upper-triangular 2x2 matrices with k = 1.

                                theorem LieAlgebra.nilpotent_of_nilpotent_quotient {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] {I : LieIdeal R L} (h₁ : I ≀ center R L) (hβ‚‚ : LieRing.IsNilpotent (L β§Έ I)) :

                                A central extension of nilpotent Lie algebras is nilpotent.

                                @[simp]

                                Note that this result is not quite a special case of LieModule.isNilpotent_range_toEnd_iff which concerns nilpotency of the (ad R L).range-module L, whereas this result concerns nilpotency of the (ad R L).range-module (ad R L).range.

                                def LieIdeal.lcs {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) :

                                Given a Lie module M over a Lie algebra L together with an ideal I of L, this is the lower central series of M as an I-module. The advantage of using this definition instead of LieModule.lowerCentralSeries R I M is that its terms are Lie submodules of M as an L-module, rather than just as an I-module.

                                See also LieIdeal.coe_lcs_eq.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem LieIdeal.lcs_zero {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] :
                                    I.lcs M 0 = ⊀
                                    @[simp]
                                    theorem LieIdeal.lcs_succ {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) :
                                    I.lcs M (k + 1) = ⁅I, I.lcs M k⁆
                                    theorem LieIdeal.lcs_top {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) :
                                    theorem LieIdeal.coe_lcs_eq {R : Type u_1} {L : Type u_2} [CommRing R] [LieRing L] [LieAlgebra R L] (I : LieIdeal R L) (M : Type u_3) [AddCommGroup M] [Module R M] [LieRingModule L M] (k : β„•) [LieModule R L M] :
                                    ↑(I.lcs M k) = ↑(LieModule.lowerCentralSeries R (β†₯I) M k)
                                    theorem LieAlgebra.ad_nilpotent_of_nilpotent (R : Type u) {A : Type v} [CommRing R] [Ring A] [Algebra R A] {a : A} (h : IsNilpotent a) :
                                    IsNilpotent ((ad R A) a)
                                    theorem LieSubalgebra.isNilpotent_ad_of_isNilpotent_ad {R : Type u} [CommRing R] {L : Type v} [LieRing L] [LieAlgebra R L] (K : LieSubalgebra R L) {x : β†₯K} (h : IsNilpotent ((LieAlgebra.ad R L) ↑x)) :
                                    IsNilpotent ((LieAlgebra.ad R β†₯K) x)
                                    theorem LieAlgebra.isNilpotent_ad_of_isNilpotent {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {L : LieSubalgebra R A} {x : β†₯L} (h : IsNilpotent ↑x) :
                                    IsNilpotent ((ad R β†₯L) x)
                                    instance LieModule.instIsNilpotentTensor (R : Type u_1) (A : Type u_2) (L : Type u_3) (M : Type u_4) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [CommRing A] [Algebra R A] [IsNilpotent L M] :

                                    The max nilpotent ideal of a Lie algebra. It is defined as the max nilpotent Lie submodule of L under the adjoint action.

                                    Equations
                                      Instances For