Documentation

Mathlib.Algebra.Order.Nonneg.Field

Semifield structure on the type of nonnegative elements #

This file defines instances and prove some properties about the nonnegative elements {x : α // 0 ≤ x} of an arbitrary type α.

This is used to derive algebraic structures on ℝ≥0 and ℚ≥0 automatically.

Main declarations #

theorem nnqsmul_nonneg {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {a : α} (q : ℚ≥0) (ha : 0 a) :
0 q a

In an ordered field, the units of the nonnegative elements are the positive elements.

Equations
    Instances For
      instance Nonneg.inv {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
      Inv { x : α // 0 x }
      Equations
        @[simp]
        theorem Nonneg.coe_inv {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (a : { x : α // 0 x }) :
        a⁻¹ = (↑a)⁻¹
        @[simp]
        theorem Nonneg.inv_mk {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {x : α} (hx : 0 x) :
        instance Nonneg.div {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
        Div { x : α // 0 x }
        Equations
          @[simp]
          theorem Nonneg.coe_div {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (a b : { x : α // 0 x }) :
          ↑(a / b) = a / b
          @[simp]
          theorem Nonneg.mk_div_mk {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {x y : α} (hx : 0 x) (hy : 0 y) :
          x, hx / y, hy = x / y,
          instance Nonneg.zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
          Pow { x : α // 0 x }
          Equations
            @[simp]
            theorem Nonneg.coe_zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (a : { x : α // 0 x }) (n : ) :
            ↑(a ^ n) = a ^ n
            @[simp]
            theorem Nonneg.mk_zpow {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] {x : α} (hx : 0 x) (n : ) :
            x, hx ^ n = x ^ n,
            instance Nonneg.instNNRatCast {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
            NNRatCast { x : α // 0 x }
            Equations
              @[simp]
              theorem Nonneg.coe_nnratCast {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) :
              q = q
              @[simp]
              theorem Nonneg.mk_nnratCast {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) :
              q, = q
              @[simp]
              theorem Nonneg.coe_nnqsmul {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) (a : { x : α // 0 x }) :
              ↑(q a) = q a
              @[simp]
              theorem Nonneg.mk_nnqsmul {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] (q : ℚ≥0) (a : α) (ha : 0 a) :
              q a, = q a
              instance Nonneg.semifield {α : Type u_1} [Semifield α] [LinearOrder α] [IsStrictOrderedRing α] :
              Semifield { x : α // 0 x }
              Equations