Documentation

Mathlib.Algebra.Star.UnitaryStarAlgAut

The ⋆-algebra automorphism given by a unitary element #

This file defines the ⋆-algebra automorphism on R given by a unitary u, which is Unitary.conjStarAlgAut S R u, defined to be x ↦ u * x * star u.

def Unitary.conjStarAlgAut (S : Type u_1) (R : Type u_2) [Semiring R] [StarMul R] [SMul S R] [IsScalarTower S R R] [SMulCommClass S R R] :

Each unitary element u defines a ⋆-algebra automorphism such that x ↦ u * x * star u.

This is the ⋆-algebra automorphism version of a specialized version of MulSemiringAction.toAlgAut.

Equations
    Instances For
      @[simp]
      theorem Unitary.conjStarAlgAut_apply {S : Type u_1} {R : Type u_2} [Semiring R] [StarMul R] [SMul S R] [IsScalarTower S R R] [SMulCommClass S R R] (u : (unitary R)) (x : R) :
      ((conjStarAlgAut S R) u) x = u * x * star u
      theorem Unitary.conjStarAlgAut_symm_apply {S : Type u_1} {R : Type u_2} [Semiring R] [StarMul R] [SMul S R] [IsScalarTower S R R] [SMulCommClass S R R] (u : (unitary R)) (x : R) :
      ((conjStarAlgAut S R) u).symm x = star u * x * u
      theorem Unitary.conjStarAlgAut_star_apply {S : Type u_1} {R : Type u_2} [Semiring R] [StarMul R] [SMul S R] [IsScalarTower S R R] [SMulCommClass S R R] (u : (unitary R)) (x : R) :
      ((conjStarAlgAut S R) (star u)) x = star u * x * u
      @[simp]
      theorem Unitary.conjStarAlgAut_symm {S : Type u_1} {R : Type u_2} [Semiring R] [StarMul R] [SMul S R] [IsScalarTower S R R] [SMulCommClass S R R] (u : (unitary R)) :
      theorem Unitary.conjStarAlgAut_trans_conjStarAlgAut {S : Type u_1} {R : Type u_2} [Semiring R] [StarMul R] [SMul S R] [IsScalarTower S R R] [SMulCommClass S R R] (u₁ u₂ : (unitary R)) :
      ((conjStarAlgAut S R) u₁).trans ((conjStarAlgAut S R) u₂) = (conjStarAlgAut S R) (u₂ * u₁)
      theorem Unitary.conjStarAlgAut_mul_apply {S : Type u_1} {R : Type u_2} [Semiring R] [StarMul R] [SMul S R] [IsScalarTower S R R] [SMulCommClass S R R] (u₁ u₂ : (unitary R)) (x : R) :
      ((conjStarAlgAut S R) (u₁ * u₂)) x = ((conjStarAlgAut S R) u₁) (((conjStarAlgAut S R) u₂) x)
      theorem Unitary.conjStarAlgAut_ext_iff {R : Type u_2} [Semiring R] [StarMul R] {S : Type u_3} [CommSemiring S] [Algebra S R] [Algebra.IsCentral S R] (u v : (unitary R)) :
      (conjStarAlgAut S R) u = (conjStarAlgAut S R) v ∃ (α : S), u = α v
      theorem Unitary.conjStarAlgAut_ext_iff' {R : Type u_3} {S : Type u_4} [Ring R] [StarMul R] [CommRing S] [StarMul S] [Algebra S R] [StarModule S R] [Algebra.IsCentral S R] [IsCancelMulZero S] [Module.IsTorsionFree S R] (u v : (unitary R)) :
      (conjStarAlgAut S R) u = (conjStarAlgAut S R) v ∃ (α : (unitary S)), u = α v