Documentation

Mathlib.AlgebraicGeometry.Morphisms.OpenImmersion

Open immersions #

A morphism is an open immersion if the underlying map of spaces is an open embedding f : X ⟶ U āŠ† Y, and the sheaf map Y(V) ⟶ f _* X(V) is an iso for each V āŠ† U.

Most of the theories are developed in AlgebraicGeometry/OpenImmersion, and we provide the remaining theorems analogous to other lemmas in AlgebraicGeometry/Morphisms/*.

Spec (R ⧸ I) ⟶ Spec R is an open immersion iff I is generated by an idempotent.

@[deprecated AlgebraicGeometry.IsOpenImmersion.iff_isIso_stalkMap (since := "2026-01-20")]

Alias of AlgebraicGeometry.IsOpenImmersion.iff_isIso_stalkMap.

theorem AlgebraicGeometry.IsOpenImmersion.of_openCover_source {X Y : Scheme} (f : X ⟶ Y) (š’° : X.OpenCover) (hf : Function.Injective ⇑f) (hš’° : āˆ€ (i : š’°.Iā‚€), IsOpenImmersion (CategoryTheory.CategoryStruct.comp (š’°.f i) f)) :