Scheme-theoretically dominant morphisms #
In this file, we define scheme-theoretically dominant morphisms as morphisms with trivial kernel.
Main results #
AlgebraicGeometry.IsSchemeTheoreticallyDominant: The class of scheme-theoretically dominant morphisms.AlgebraicGeometry.isSchemeTheoreticallyDominant_iff_isDominant: If the target is reduced and the map is quasi-compact, then scheme-theoretically dominant is equivalent to dominant.AlgebraicGeometry.IsSchemeTheoreticallyDominant.of_isPullback: quasicompact + scheme-theoretically dominant is stable under flat base change.
A morphism is scheme-theoretically dominant if its kernel is trivial.
Instances
theorem
AlgebraicGeometry.Scheme.Hom.ker_eq_bot
{X Y : Scheme}
(f : X ⟶ Y)
[self : IsSchemeTheoreticallyDominant f]
:
Alias of AlgebraicGeometry.IsSchemeTheoreticallyDominant.ker_eq_bot.
@[instance 100]
instance
AlgebraicGeometry.instIsSchemeTheoreticallyDominantOfIsIsoScheme
{X S : Scheme}
(f : X ⟶ S)
[CategoryTheory.IsIso f]
:
@[instance 100]
instance
AlgebraicGeometry.instIsDominantOfIsSchemeTheoreticallyDominantOfQuasiCompact
{X S : Scheme}
(f : X ⟶ S)
[IsSchemeTheoreticallyDominant f]
[QuasiCompact f]
:
instance
AlgebraicGeometry.instIsSchemeTheoreticallyDominantCompScheme
{X Y Z : Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[IsSchemeTheoreticallyDominant f]
[IsSchemeTheoreticallyDominant g]
:
theorem
AlgebraicGeometry.IsSchemeTheoreticallyDominant.of_isDominant
{X Y : Scheme}
(f : X ⟶ Y)
[IsDominant f]
[IsReduced Y]
:
theorem
AlgebraicGeometry.isSchemeTheoreticallyDominant_iff_isDominant
{X Y : Scheme}
(f : X ⟶ Y)
[QuasiCompact f]
[IsReduced Y]
:
If the target is reduced and the map is quasi-compact, then scheme-theoretically dominant is equivalent to dominant.
theorem
AlgebraicGeometry.Scheme.Hom.app_injective
{X Y : Scheme}
(f : X ⟶ Y)
[IsSchemeTheoreticallyDominant f]
[QuasiCompact f]
(U : Y.Opens)
:
theorem
AlgebraicGeometry.IsSchemeTheoreticallyDominant.isReduced
{X Y : Scheme}
(f : X ⟶ Y)
[IsSchemeTheoreticallyDominant f]
[QuasiCompact f]
[IsReduced X]
:
instance
AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackSnd
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[IsSchemeTheoreticallyDominant f]
[QuasiCompact f]
[Flat g]
:
theorem
AlgebraicGeometry.IsSchemeTheoreticallyDominant.of_isPullback
{X Y Z S : Scheme}
{f : X ⟶ S}
{g : Y ⟶ S}
{pX : Z ⟶ X}
{pY : Z ⟶ Y}
(H : CategoryTheory.IsPullback pX pY f g)
[IsSchemeTheoreticallyDominant f]
[QuasiCompact f]
[Flat g]
:
instance
AlgebraicGeometry.IsSchemeTheoreticallyDominant.pullbackFst
{X Y S : Scheme}
(f : X ⟶ S)
(g : Y ⟶ S)
[IsSchemeTheoreticallyDominant g]
[QuasiCompact g]
[Flat f]
: