Linear functions are analytic #
In this file we prove that a ContinuousLinearMap defines an analytic function with
the formal power series f x = f a + f (x - a). We also prove similar results for bilinear maps.
We deduce this fact from the stronger result that continuous linear maps are continuously polynomial, i.e., they admit a finite power series.
@[simp]
theorem
ContinuousLinearMap.fpowerSeries_radius
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : E)
:
theorem
ContinuousLinearMap.hasFiniteFPowerSeriesOnBall
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : E)
:
HasFiniteFPowerSeriesOnBall (โf) (f.fpowerSeries x) x 2 โค
theorem
ContinuousLinearMap.hasFPowerSeriesOnBall
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : E)
:
HasFPowerSeriesOnBall (โf) (f.fpowerSeries x) x โค
theorem
ContinuousLinearMap.hasFPowerSeriesAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : E)
:
HasFPowerSeriesAt (โf) (f.fpowerSeries x) x
theorem
ContinuousLinearMap.cpolynomialAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : E)
:
CPolynomialAt ๐ (โf) x
theorem
ContinuousLinearMap.analyticAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : E)
:
AnalyticAt ๐ (โf) x
theorem
ContinuousLinearMap.cpolynomialOn
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(s : Set E)
:
CPolynomialOn ๐ (โf) s
theorem
ContinuousLinearMap.analyticOnNhd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(s : Set E)
:
AnalyticOnNhd ๐ (โf) s
theorem
ContinuousLinearMap.analyticWithinAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(s : Set E)
(x : E)
:
AnalyticWithinAt ๐ (โf) s x
theorem
ContinuousLinearMap.analyticOn
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(s : Set E)
:
AnalyticOn ๐ (โf) s
def
ContinuousLinearMap.uncurryBilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
:
ContinuousMultilinearMap ๐ (fun (i : Fin 2) => E ร F) G
Reinterpret a bilinear map f : E โL[๐] F โL[๐] G as a multilinear map
(E ร F) [ร2]โL[๐] G. This multilinear map is the second term in the formal
multilinear series expansion of uncurry f. It is given by
f.uncurryBilinear ![(x, y), (x', y')] = f x y'.
Equations
Instances For
@[simp]
theorem
ContinuousLinearMap.uncurryBilinear_apply
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(m : Fin 2 โ E ร F)
:
def
ContinuousLinearMap.fpowerSeriesBilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
FormalMultilinearSeries ๐ (E ร F) G
Formal multilinear series expansion of a bilinear function f : E โL[๐] F โL[๐] G.
Equations
Instances For
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_zero
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_one
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_two
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
(n : โ)
:
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_radius
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
theorem
ContinuousLinearMap.hasFPowerSeriesOnBall_bilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
HasFPowerSeriesOnBall (fun (x : E ร F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x โค
theorem
ContinuousLinearMap.hasFPowerSeriesAt_bilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
HasFPowerSeriesAt (fun (x : E ร F) => (f x.1) x.2) (f.fpowerSeriesBilinear x) x
theorem
ContinuousLinearMap.analyticAt_bilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(x : E ร F)
:
AnalyticAt ๐ (fun (x : E ร F) => (f x.1) x.2) x
theorem
ContinuousLinearMap.analyticWithinAt_bilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(s : Set (E ร F))
(x : E ร F)
:
AnalyticWithinAt ๐ (fun (x : E ร F) => (f x.1) x.2) s x
theorem
ContinuousLinearMap.analyticOnNhd_bilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(s : Set (E ร F))
:
AnalyticOnNhd ๐ (fun (x : E ร F) => (f x.1) x.2) s
theorem
ContinuousLinearMap.analyticOn_bilinear
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace ๐ G]
(f : E โL[๐] F โL[๐] G)
(s : Set (E ร F))
:
AnalyticOn ๐ (fun (x : E ร F) => (f x.1) x.2) s
theorem
analyticAt_id
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{z : E}
:
AnalyticAt ๐ id z
theorem
analyticWithinAt_id
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{s : Set E}
{z : E}
:
AnalyticWithinAt ๐ id s z
theorem
analyticOnNhd_id
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{s : Set E}
:
AnalyticOnNhd ๐ (fun (x : E) => x) s
id is entire
theorem
analyticOn_id
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{s : Set E}
:
AnalyticOn ๐ (fun (x : E) => x) s
theorem
analyticAt_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{p : E ร F}
:
AnalyticAt ๐ (fun (p : E ร F) => p.1) p
fst is analytic
theorem
analyticWithinAt_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{t : Set (E ร F)}
{p : E ร F}
:
AnalyticWithinAt ๐ (fun (p : E ร F) => p.1) t p
theorem
analyticAt_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{p : E ร F}
:
AnalyticAt ๐ (fun (p : E ร F) => p.2) p
snd is analytic
theorem
analyticWithinAt_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{t : Set (E ร F)}
{p : E ร F}
:
AnalyticWithinAt ๐ (fun (p : E ร F) => p.2) t p
theorem
analyticOnNhd_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{t : Set (E ร F)}
:
AnalyticOnNhd ๐ (fun (p : E ร F) => p.1) t
fst is entire
theorem
analyticOn_fst
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{t : Set (E ร F)}
:
AnalyticOn ๐ (fun (p : E ร F) => p.1) t
theorem
analyticOnNhd_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{t : Set (E ร F)}
:
AnalyticOnNhd ๐ (fun (p : E ร F) => p.2) t
snd is entire
theorem
analyticOn_snd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
{t : Set (E ร F)}
:
AnalyticOn ๐ (fun (p : E ร F) => p.2) t
theorem
ContinuousLinearEquiv.analyticAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(x : E)
:
AnalyticAt ๐ (โf) x
theorem
ContinuousLinearEquiv.analyticOnNhd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(s : Set E)
:
AnalyticOnNhd ๐ (โf) s
theorem
ContinuousLinearEquiv.analyticWithinAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(s : Set E)
(x : E)
:
AnalyticWithinAt ๐ (โf) s x
theorem
ContinuousLinearEquiv.analyticOn
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โL[๐] F)
(s : Set E)
:
AnalyticOn ๐ (โf) s
theorem
LinearIsometryEquiv.analyticAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(x : E)
:
AnalyticAt ๐ (โf) x
theorem
LinearIsometryEquiv.analyticOnNhd
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(s : Set E)
:
AnalyticOnNhd ๐ (โf) s
theorem
LinearIsometryEquiv.analyticWithinAt
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(s : Set E)
(x : E)
:
AnalyticWithinAt ๐ (โf) s x
theorem
LinearIsometryEquiv.analyticOn
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(f : E โโแตข[๐] F)
(s : Set E)
:
AnalyticOn ๐ (โf) s