Documentation

Mathlib.Analysis.Calculus.TangentCone.Seq

Tangent cone points as limits of sequences #

This file contains a few ways to describe tangentConeAt as the set of limits of certain sequences.

In many cases, one can generalize results about the tangent cone by using mem_tangentConeAt_of_seq and exists_fun_of_mem_tangentConeAt instead of these lemmas.

theorem mem_tangentConeAt_iff_exists_seq {R : Type u_1} {E : Type u_2} [AddCommGroup E] [SMul R E] [TopologicalSpace E] [FirstCountableTopology E] {s : Set E} {x y : E} :
y โˆˆ tangentConeAt R s x โ†” โˆƒ (c : โ„• โ†’ R) (d : โ„• โ†’ E), Filter.Tendsto d Filter.atTop (nhds 0) โˆง (โˆ€แถ  (n : โ„•) in Filter.atTop, x + d n โˆˆ s) โˆง Filter.Tendsto (fun (n : โ„•) => c n โ€ข d n) Filter.atTop (nhds y)

In a vector space with first countable topology, a vector y belongs to tangentConeAt ๐•œ s x if and only if there exist sequences c n and d n such that

  • d n tends to zero as n โ†’ โˆž;
  • x + d n โˆˆ s for sufficiently large n;
  • c n โ€ข d n tends to y as n โ†’ โˆž.

See mem_tangentConeAt_of_seq and exists_fun_of_mem_tangentConeAt for versions of two implications of this theorem that don't assume first countable topology.

theorem tangentConeAt.lim_zero {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] {ฮฑ : Type u_3} (l : Filter ฮฑ) {c : ฮฑ โ†’ ๐•œ} {d : ฮฑ โ†’ E} {y : E} (hc : Filter.Tendsto (fun (n : ฮฑ) => โ€–c nโ€–) l Filter.atTop) (hd : Filter.Tendsto (fun (n : ฮฑ) => c n โ€ข d n) l (nhds y)) :

Auxiliary lemma ensuring that, under the assumptions from an old definition of the tangent cone, the sequence d tends to 0 at infinity.

theorem mem_tangentConeAt_of_pow_smul {๐•œ : Type u_1} {E : Type u_2} [NormedDivisionRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] {s : Set E} {x y : E} {r : ๐•œ} (hrโ‚€ : r โ‰  0) (hr : โ€–rโ€– < 1) (hs : โˆ€แถ  (n : โ„•) in Filter.atTop, x + r ^ n โ€ข y โˆˆ s) :
y โˆˆ tangentConeAt ๐•œ s x
theorem mem_tangentConeAt_iff_exists_seq_norm_tendsto_atTop {๐•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} {x y : E} :
y โˆˆ tangentConeAt ๐•œ s x โ†” โˆƒ (c : โ„• โ†’ ๐•œ) (d : โ„• โ†’ E), Filter.Tendsto (fun (x : โ„•) => โ€–c xโ€–) Filter.atTop Filter.atTop โˆง (โˆ€แถ  (n : โ„•) in Filter.atTop, x + d n โˆˆ s) โˆง Filter.Tendsto (fun (n : โ„•) => c n โ€ข d n) Filter.atTop (nhds y)

In a normed space over a nontrivially normed field, a point y belongs to the tangent cone of a set s at x iff there exiss a sequence of scalars c n and a sequence of points d n such that

  • โ€–c nโ€– โ†’ โˆž as n โ†’ โˆž;
  • x + d n โˆˆ s for sufficiently large n;
  • c n โ€ข d n tendst to y.

Before https://github.com/leanprover-community/mathlib4/pull/34127, the right-hand side of this equivalence was the definition of the tangent cone.

In most cases, exists_fun_of_mem_tangentConeAt and/or mem_tangentConeAt_of_seq can be used to generalize a proof using this lemma to topological vector spaces.