Documentation

Mathlib.Analysis.Complex.ValueDistribution.Proximity.Basic

The Proximity Function of Value Distribution Theory #

This file defines the "proximity function" attached to a meromorphic function defined on the complex plane. Also known as the Nevanlinna Proximity Function, this is one of the three main functions used in Value Distribution Theory.

The proximity function is a logarithmically weighted measure quantifying how well a meromorphic function f approximates the constant function a on the circle of radius R in the complex plane. The definition ensures that large values correspond to good approximation.

See Section VI.2 of [Lang, Introduction to Complex Hyperbolic Spaces][MR886677] or Section 1.1 of [Noguchi-Winkelmann, Nevanlinna Theory in Several Complex Variables and Diophantine Approximation][MR3156076] for a detailed discussion.

noncomputable def ValueDistribution.proximity {E : Type u_1} [NormedAddCommGroup E] (f : โ„‚ โ†’ E) (a : WithTop E) :

The Proximity Function of Value Distribution Theory

If f : โ„‚ โ†’ E is meromorphic and a : WithTop E is any value, the proximity function is a logarithmically weighted measure quantifying how well a meromorphic function f approximates the constant function a on the circle of radius R in the complex plane. In the special case where a = โŠค, it quantifies how well f approximates infinity.

Equations
    Instances For
      theorem ValueDistribution.proximity_coe {E : Type u_1} [NormedAddCommGroup E] {f : โ„‚ โ†’ E} {aโ‚€ : E} :
      proximity f โ†‘aโ‚€ = Real.circleAverage (fun (x : โ„‚) => โ€–f x - aโ‚€โ€–โปยน.posLog) 0

      Expand the definition of proximity f aโ‚€ in case where aโ‚€ is finite.

      Expand the definition of proximity f aโ‚€ in case where aโ‚€ is zero.

      For complex-valued functions, expand the definition of proximity f aโ‚€ in case where aโ‚€ is zero. This is a simple variant of proximity_zero defined above.

      Expand the definition of proximity f a in case where aโ‚€ = โŠค.

      Elementary Properties of the Proximity Function #

      If two functions differ only on a discrete set, then their proximity functions agree, except perhaps at radius 0.

      theorem ValueDistribution.proximity_congr_codiscrete {E : Type u_1} [NormedAddCommGroup E] {f g : โ„‚ โ†’ E} {a : WithTop E} {r : โ„} (hfg : f =แถ [Filter.codiscrete โ„‚] g) (hr : r โ‰  0) :
      proximity f a r = proximity g a r

      If two functions differ only on a discrete set, then their proximity functions agree, except perhaps at radius 0.

      theorem ValueDistribution.proximity_coe_eq_proximity_sub_const_zero {E : Type u_1} [NormedAddCommGroup E] {f : โ„‚ โ†’ E} {aโ‚€ : E} :
      proximity f โ†‘aโ‚€ = proximity (f - fun (x : โ„‚) => aโ‚€) 0

      For finite values aโ‚€, the proximity function proximity f aโ‚€ equals the proximity function for the value zero of the shifted function f - aโ‚€.

      For complex-valued f, establish a simple relation between the proximity functions of f and of fโปยน.

      For complex-valued f, the difference between proximity f โŠค and proximity fโปยน โŠค is the circle average of log โ€–f ยทโ€–.

      The proximity function is even.

      theorem ValueDistribution.proximity_nonneg {E : Type u_1} [NormedAddCommGroup E] {f : โ„‚ โ†’ E} {a : WithTop E} :

      The proximity function is non-negative.

      Behaviour under Arithmetic Operations #

      theorem ValueDistribution.proximity_sum_top_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {ฮฑ : Type u_2} (s : Finset ฮฑ) (f : ฮฑ โ†’ โ„‚ โ†’ E) (hf : โˆ€ (a : ฮฑ), Meromorphic (f a)) :
      proximity (โˆ‘ a โˆˆ s, f a) โŠค โ‰ค โˆ‘ a โˆˆ s, proximity (f a) โŠค + fun (x : โ„) => Real.log โ†‘s.card

      The proximity function of a sum of functions at โŠค is less than or equal to the sum of the proximity functions of the summand, plus log of the number of summands.

      theorem ValueDistribution.proximity_add_top_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace โ„‚ E] {fโ‚ fโ‚‚ : โ„‚ โ†’ E} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) :
      proximity (fโ‚ + fโ‚‚) โŠค โ‰ค proximity fโ‚ โŠค + proximity fโ‚‚ โŠค + fun (x : โ„) => Real.log 2

      The proximity function of f + g at โŠค is less than or equal to the sum of the proximity functions of f and g, plus log 2 (where 2 is the number of summands).

      theorem ValueDistribution.proximity_mul_top_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) :
      proximity (fโ‚ * fโ‚‚) โŠค โ‰ค proximity fโ‚ โŠค + proximity fโ‚‚ โŠค

      The proximity function f * g at โŠค is less than or equal to the sum of the proximity functions of f and g, respectively.

      @[deprecated ValueDistribution.proximity_mul_top_le (since := "2025-12-11")]
      theorem ValueDistribution.proximity_top_mul_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) :
      proximity (fโ‚ * fโ‚‚) โŠค โ‰ค proximity fโ‚ โŠค + proximity fโ‚‚ โŠค

      Alias of ValueDistribution.proximity_mul_top_le.


      The proximity function f * g at โŠค is less than or equal to the sum of the proximity functions of f and g, respectively.

      theorem ValueDistribution.proximity_mul_zero_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) :
      proximity (fโ‚ * fโ‚‚) 0 โ‰ค proximity fโ‚ 0 + proximity fโ‚‚ 0

      The proximity function f * g at 0 is less than or equal to the sum of the proximity functions of f and g, respectively.

      @[deprecated ValueDistribution.proximity_mul_zero_le (since := "2025-12-11")]
      theorem ValueDistribution.proximity_zero_mul_le {fโ‚ fโ‚‚ : โ„‚ โ†’ โ„‚} (hโ‚fโ‚ : Meromorphic fโ‚) (hโ‚fโ‚‚ : Meromorphic fโ‚‚) :
      proximity (fโ‚ * fโ‚‚) 0 โ‰ค proximity fโ‚ 0 + proximity fโ‚‚ 0

      Alias of ValueDistribution.proximity_mul_zero_le.


      The proximity function f * g at 0 is less than or equal to the sum of the proximity functions of f and g, respectively.

      @[simp]

      For natural numbers n, the proximity function of f ^ n at โŠค equals n times the proximity function of f at โŠค.

      @[simp]

      For natural numbers n, the proximity function of f ^ n at 0 equals n times the proximity function of f at 0.