Documentation

Mathlib.Analysis.Meromorphic.Basic

Meromorphic functions #

Main statements:

def MeromorphicAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (f : 𝕜E) (x : 𝕜) :

Meromorphy of f at x (more precisely, on a punctured neighbourhood of x; the value at x itself is irrelevant).

Equations
    Instances For
      theorem AnalyticAt.meromorphicAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {x : 𝕜} (hf : AnalyticAt 𝕜 f x) :
      theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {z₀ : 𝕜} (hf : MeromorphicAt f z₀) :
      (∀ᶠ (z : 𝕜) in nhdsWithin z₀ {z₀}, f z = 0) ∀ᶠ (z : 𝕜) in nhdsWithin z₀ {z₀}, f z 0
      @[simp]
      theorem MeromorphicAt.const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (e : E) (x : 𝕜) :
      MeromorphicAt (fun (x : 𝕜) => e) x
      theorem MeromorphicAt.add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      theorem MeromorphicAt.fun_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      MeromorphicAt (fun (i : 𝕜) => f i + g i) x

      Eta-expanded form of MeromorphicAt.add

      theorem MeromorphicAt.smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f : 𝕜𝕜} {g : 𝕜E} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      theorem MeromorphicAt.fun_smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f : 𝕜𝕜} {g : 𝕜E} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      MeromorphicAt (fun (i : 𝕜) => f i g i) x

      Eta-expanded form of MeromorphicAt.smul

      theorem MeromorphicAt.mul {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f g : 𝕜𝕜'} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      theorem MeromorphicAt.fun_mul {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f g : 𝕜𝕜'} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      MeromorphicAt (fun (i : 𝕜) => f i * g i) x

      Eta-expanded form of MeromorphicAt.mul

      theorem MeromorphicAt.prod {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {ι : Type u_4} {s : Finset ι} {F : ι𝕜𝕜'} {x : 𝕜} (h : ∀ (σ : ι), MeromorphicAt (F σ) x) :
      MeromorphicAt (∏ ns, F n) x

      Finite products of meromorphic functions are meromorphic.

      theorem MeromorphicAt.fun_prod {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {ι : Type u_4} {s : Finset ι} {F : ι𝕜𝕜'} {x : 𝕜} (h : ∀ (σ : ι), MeromorphicAt (F σ) x) :
      MeromorphicAt (fun (z : 𝕜) => ns, F n z) x

      Finite products of meromorphic functions are meromorphic.

      theorem MeromorphicAt.sum {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_4} {s : Finset ι} {G : ι𝕜E} {x : 𝕜} (h : ∀ (σ : ι), MeromorphicAt (G σ) x) :
      MeromorphicAt (∑ ns, G n) x

      Finite sums of meromorphic functions are meromorphic.

      theorem MeromorphicAt.fun_sum {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_4} {s : Finset ι} {G : ι𝕜E} {x : 𝕜} (h : ∀ (σ : ι), MeromorphicAt (G σ) x) :
      MeromorphicAt (fun (z : 𝕜) => ns, G n z) x

      Finite sums of meromorphic functions are meromorphic.

      theorem MeromorphicAt.neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f : 𝕜E} (hf : MeromorphicAt f x) :
      theorem MeromorphicAt.fun_neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f : 𝕜E} (hf : MeromorphicAt f x) :
      MeromorphicAt (fun (i : 𝕜) => -f i) x

      Eta-expanded form of MeromorphicAt.neg

      @[simp]
      theorem MeromorphicAt.neg_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f : 𝕜E} :
      theorem MeromorphicAt.sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      theorem MeromorphicAt.fun_sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      MeromorphicAt (fun (i : 𝕜) => f i - g i) x

      Eta-expanded form of MeromorphicAt.sub

      theorem MeromorphicAt.meromorphicAt_add_iff_meromorphicAt₁ {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hf : MeromorphicAt f x) :

      If f is meromorphic at x, then f + g is meromorphic at x if and only if g is meromorphic at x.

      theorem MeromorphicAt.meromorphicAt_add_iff_meromorphicAt₂ {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hg : MeromorphicAt g x) :

      If g is meromorphic at x, then f + g is meromorphic at x if and only if f is meromorphic at x.

      theorem MeromorphicAt.meromorphicAt_sub_iff_meromorphicAt₁ {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hf : MeromorphicAt f x) :

      If f is meromorphic at x, then f - g is meromorphic at x if and only if g is meromorphic at x.

      theorem MeromorphicAt.meromorphicAt_sub_iff_meromorphicAt₂ {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hg : MeromorphicAt g x) :

      If g is meromorphic at x, then f - g is meromorphic at x if and only if f is meromorphic at x.

      theorem MeromorphicAt.congr {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (hf : MeromorphicAt f x) (hfg : f =ᶠ[nhdsWithin x {x}] g) :

      With our definitions, MeromorphicAt f x depends only on the values of f on a punctured neighbourhood of x (not on f x)

      theorem MeromorphicAt.meromorphicAt_congr {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f g : 𝕜E} (h : f =ᶠ[nhdsWithin x {x}] g) :

      If two functions agree on a punctured neighborhood, then one is meromorphic iff the other is so.

      @[simp]
      theorem MeromorphicAt.update_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [DecidableEq 𝕜] {f : 𝕜E} {z w : 𝕜} {e : E} :
      theorem MeromorphicAt.update {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [DecidableEq 𝕜] {f : 𝕜E} {z : 𝕜} (hf : MeromorphicAt f z) (w : 𝕜) (e : E) :
      theorem MeromorphicAt.inv {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f : 𝕜𝕜'} (hf : MeromorphicAt f x) :
      theorem MeromorphicAt.fun_inv {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f : 𝕜𝕜'} (hf : MeromorphicAt f x) :
      MeromorphicAt (fun (i : 𝕜) => (f i)⁻¹) x

      Eta-expanded form of MeromorphicAt.inv

      @[simp]
      theorem MeromorphicAt.inv_iff {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f : 𝕜𝕜'} :
      theorem MeromorphicAt.div {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f g : 𝕜𝕜'} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      theorem MeromorphicAt.fun_div {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f g : 𝕜𝕜'} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
      MeromorphicAt (fun (i : 𝕜) => f i / g i) x

      Eta-expanded form of MeromorphicAt.div

      theorem MeromorphicAt.pow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f : 𝕜𝕜'} (hf : MeromorphicAt f x) (n : ) :
      theorem MeromorphicAt.fun_pow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f : 𝕜𝕜'} (hf : MeromorphicAt f x) (n : ) :
      MeromorphicAt (fun (i : 𝕜) => f i ^ n) x

      Eta-expanded form of MeromorphicAt.pow

      theorem MeromorphicAt.zpow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f : 𝕜𝕜'} (hf : MeromorphicAt f x) (n : ) :
      theorem MeromorphicAt.fun_zpow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {x : 𝕜} {f : 𝕜𝕜'} (hf : MeromorphicAt f x) (n : ) :
      MeromorphicAt (fun (i : 𝕜) => f i ^ n) x

      Eta-expanded form of MeromorphicAt.zpow

      theorem MeromorphicAt.eventually_continuousAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f : 𝕜E} (h : MeromorphicAt f x) :

      If a function is meromorphic at a point, then it is continuous at nearby points.

      theorem MeromorphicAt.eventually_analyticAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} [CompleteSpace E] {f : 𝕜E} (h : MeromorphicAt f x) :
      ∀ᶠ (y : 𝕜) in nhdsWithin x {x}, AnalyticAt 𝕜 f y

      In a complete space, a function which is meromorphic at a point is analytic at all nearby points. The completeness assumption can be dispensed with if one assumes that f is meromorphic on a set around x, see MeromorphicOn.eventually_analyticAt.

      theorem MeromorphicAt.iff_eventuallyEq_zpow_smul_analyticAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} {f : 𝕜E} :
      MeromorphicAt f x ∃ (n : ) (g : 𝕜E), AnalyticAt 𝕜 g x ∀ᶠ (z : 𝕜) in nhdsWithin x {x}, f z = (z - x) ^ n g z
      theorem MeromorphicAt.deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E] {f : 𝕜E} {x : 𝕜} (h : MeromorphicAt f x) :

      Derivatives of meromorphic functions are meromorphic.

      @[deprecated MeromorphicAt.deriv (since := "2025-12-21")]
      theorem MeromorphicAt.fun_deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E] {f : 𝕜E} {x : 𝕜} (h : MeromorphicAt f x) :
      MeromorphicAt (fun (z : 𝕜) => deriv f z) x
      theorem MeromorphicAt.iterated_deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E] {n : } {f : 𝕜E} {x : 𝕜} (h : MeromorphicAt f x) :

      Iterated derivatives of meromorphic functions are meromorphic.

      @[deprecated MeromorphicAt.iterated_deriv (since := "2025-12-21")]
      theorem MeromorphicAt.fun_iterated_deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [CompleteSpace E] {n : } {f : 𝕜E} {x : 𝕜} (h : MeromorphicAt f x) :
      MeromorphicAt (fun (z : 𝕜) => deriv^[n] f z) x
      theorem meromorphicAt_smul_iff_of_ne_zero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {g : 𝕜𝕜} {x : 𝕜} {f : 𝕜E} (hg : AnalyticAt 𝕜 g x) (hg' : g x 0) :
      theorem meromorphicAt_mul_iff_of_ne_zero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {g : 𝕜𝕜} {x : 𝕜} {f : 𝕜𝕜} (hg : AnalyticAt 𝕜 g x) (hg' : g x 0) :

      Composition with an analytic function #

      theorem MeromorphicAt.comp_analyticAt {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F] [IsScalarTower 𝕜 𝕜' F] {x : 𝕜} {f : 𝕜'F} {g : 𝕜𝕜'} (hf : MeromorphicAt f (g x)) (hg : AnalyticAt 𝕜 g x) :

      The composition of a meromorphic and an analytic function is meromorphic.

      theorem meromorphicAt_comp_iff_of_deriv_ne_zero {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x : 𝕜} [CompleteSpace 𝕜] [CharZero 𝕜] {f : 𝕜E} {g : 𝕜𝕜} (hg : AnalyticAt 𝕜 g x) (hg' : deriv g x 0) :
      def MeromorphicOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (f : 𝕜E) (U : Set 𝕜) :

      Meromorphy of a function on a set.

      Equations
        Instances For
          theorem AnalyticOnNhd.meromorphicOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : AnalyticOnNhd 𝕜 f U) :
          theorem MeromorphicOn.congr_codiscreteWithin_of_eqOn_compl {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) (h₁ : f =ᶠ[Filter.codiscreteWithin U] g) (h₂ : Set.EqOn f g U) :

          If f is meromorphic on U, if g agrees with f on a codiscrete subset of U and outside of U, then g is also meromorphic on U.

          theorem MeromorphicOn.congr_codiscreteWithin {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) (h₁ : f =ᶠ[Filter.codiscreteWithin U] g) (h₂ : IsOpen U) :

          If f is meromorphic on an open set U, if g agrees with f on a codiscrete subset of U, then g is also meromorphic on U.

          theorem meromorphicOn_congr_codiscreteWithin {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {U : Set 𝕜} {f g : 𝕜E} (h₁ : f =ᶠ[Filter.codiscreteWithin U] g) (h₂ : IsOpen U) :

          If two functions differ only on a discrete set of an open, then one is meromorphic iff so is the other.

          theorem MeromorphicOn.const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (e : E) {U : Set 𝕜} :
          MeromorphicOn (fun (x : 𝕜) => e) U
          theorem MeromorphicOn.mono_set {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) {V : Set 𝕜} (hv : V U) :
          theorem MeromorphicOn.add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) (hg : MeromorphicOn g U) :
          theorem MeromorphicOn.fun_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) (hg : MeromorphicOn g U) :
          MeromorphicOn (fun (i : 𝕜) => f i + g i) U

          Eta-expanded form of MeromorphicOn.add

          theorem MeromorphicOn.sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) (hg : MeromorphicOn g U) :
          theorem MeromorphicOn.fun_sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) (hg : MeromorphicOn g U) :
          MeromorphicOn (fun (i : 𝕜) => f i - g i) U

          Eta-expanded form of MeromorphicOn.sub

          theorem MeromorphicOn.neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) :
          theorem MeromorphicOn.fun_neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) :
          MeromorphicOn (fun (i : 𝕜) => -f i) U

          Eta-expanded form of MeromorphicOn.neg

          @[simp]
          theorem MeromorphicOn.neg_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} :
          theorem MeromorphicOn.smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {U : Set 𝕜} {s : 𝕜𝕜} (hs : MeromorphicOn s U) {f : 𝕜E} (hf : MeromorphicOn f U) :
          theorem MeromorphicOn.fun_smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {U : Set 𝕜} {s : 𝕜𝕜} (hs : MeromorphicOn s U) {f : 𝕜E} (hf : MeromorphicOn f U) :
          MeromorphicOn (fun (i : 𝕜) => s i f i) U

          Eta-expanded form of MeromorphicOn.smul

          theorem MeromorphicOn.mul {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s t : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (ht : MeromorphicOn t U) :
          theorem MeromorphicOn.fun_mul {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s t : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (ht : MeromorphicOn t U) :
          MeromorphicOn (fun (i : 𝕜) => s i * t i) U

          Eta-expanded form of MeromorphicOn.mul

          theorem MeromorphicOn.prod {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {U : Set 𝕜} {ι : Type u_4} {s : Finset ι} {f : ι𝕜𝕜'} (h : ∀ (σ : ι), MeromorphicOn (f σ) U) :
          MeromorphicOn (∏ ns, f n) U

          Finite products of meromorphic functions are meromorphic.

          theorem MeromorphicOn.fun_prod {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {U : Set 𝕜} {ι : Type u_4} {s : Finset ι} {f : ι𝕜𝕜'} (h : ∀ (σ : ι), MeromorphicOn (f σ) U) :
          MeromorphicOn (fun (z : 𝕜) => ns, f n z) U

          Finite products of meromorphic functions are meromorphic.

          theorem MeromorphicOn.sum {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {U : Set 𝕜} {ι : Type u_4} {s : Finset ι} {f : ι𝕜E} (h : ∀ (σ : ι), MeromorphicOn (f σ) U) :
          MeromorphicOn (∑ ns, f n) U

          Finite sums of meromorphic functions are meromorphic.

          theorem MeromorphicOn.fun_sum {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {U : Set 𝕜} {ι : Type u_4} {s : Finset ι} {f : ι𝕜E} (h : ∀ (σ : ι), MeromorphicOn (f σ) U) :
          MeromorphicOn (fun (z : 𝕜) => ns, f n z) U

          Finite sums of meromorphic functions are meromorphic.

          theorem MeromorphicOn.inv {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) :
          theorem MeromorphicOn.fun_inv {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) :
          MeromorphicOn (fun (i : 𝕜) => (s i)⁻¹) U

          Eta-expanded form of MeromorphicOn.inv

          @[simp]
          theorem MeromorphicOn.inv_iff {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s : 𝕜𝕜'} {U : Set 𝕜} :
          theorem MeromorphicOn.div {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s t : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (ht : MeromorphicOn t U) :
          theorem MeromorphicOn.fun_div {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s t : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (ht : MeromorphicOn t U) :
          MeromorphicOn (fun (i : 𝕜) => s i / t i) U

          Eta-expanded form of MeromorphicOn.div

          theorem MeromorphicOn.pow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (n : ) :
          theorem MeromorphicOn.fun_pow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (n : ) :
          MeromorphicOn (fun (i : 𝕜) => s i ^ n) U

          Eta-expanded form of MeromorphicOn.pow

          theorem MeromorphicOn.zpow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (n : ) :
          theorem MeromorphicOn.fun_zpow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {s : 𝕜𝕜'} {U : Set 𝕜} (hs : MeromorphicOn s U) (n : ) :
          MeromorphicOn (fun (i : 𝕜) => s i ^ n) U

          Eta-expanded form of MeromorphicOn.zpow

          theorem MeromorphicOn.deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) [CompleteSpace E] :

          Derivatives of meromorphic functions are meromorphic.

          @[deprecated MeromorphicOn.deriv (since := "2025-12-21")]
          theorem MeromorphicOn.fun_deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) [CompleteSpace E] :
          MeromorphicOn (fun (z : 𝕜) => deriv f z) U
          theorem MeromorphicOn.iterated_deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) [CompleteSpace E] {n : } :

          Iterated derivatives of meromorphic functions are meromorphic.

          @[deprecated MeromorphicOn.iterated_deriv (since := "2025-12-21")]
          theorem MeromorphicOn.fun_iterated_deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) [CompleteSpace E] {n : } :
          MeromorphicOn (fun (z : 𝕜) => deriv^[n] f z) U
          theorem MeromorphicOn.congr {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} {U : Set 𝕜} (hf : MeromorphicOn f U) (h_eq : Set.EqOn f g U) (hu : IsOpen U) :
          theorem MeromorphicOn.countable_compl_analyticAt_inter {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {U : Set 𝕜} [SecondCountableTopology 𝕜] [CompleteSpace E] (h : MeromorphicOn f U) :
          ({z : 𝕜 | AnalyticAt 𝕜 f z} U).Countable

          The singular set of a meromorphic function is countable.

          def Meromorphic {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (f : 𝕜E) :

          Meromorphy of a function on all of 𝕜.

          Equations
            Instances For
              @[simp]
              theorem meromorphicOn_univ {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} :

              A function is meromorphic iff it is meromorphic on Set.univ.

              theorem Meromorphic.meromorphicAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {x : 𝕜} (hf : Meromorphic f) :
              theorem Meromorphic.meromorphicOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} {s : Set 𝕜} (hf : Meromorphic f) :
              theorem Meromorphic.const {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (x : E) :
              Meromorphic fun (x_1 : 𝕜) => x
              theorem Meromorphic.neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} (hf : Meromorphic f) :
              theorem Meromorphic.fun_neg {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} (hf : Meromorphic f) :
              Meromorphic fun (i : 𝕜) => -f i

              Eta-expanded form of Meromorphic.neg

              theorem Meromorphic.add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} (hf : Meromorphic f) (hg : Meromorphic g) :
              theorem Meromorphic.fun_add {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} (hf : Meromorphic f) (hg : Meromorphic g) :
              Meromorphic fun (i : 𝕜) => f i + g i

              Eta-expanded form of Meromorphic.add

              theorem Meromorphic.sum {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_4} {s : Finset ι} {G : ι𝕜E} (h : ∀ (σ : ι), Meromorphic (G σ)) :
              Meromorphic (∑ ns, G n)
              theorem Meromorphic.fun_sum {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {ι : Type u_4} {s : Finset ι} {G : ι𝕜E} (h : ∀ (σ : ι), Meromorphic (G σ)) :
              Meromorphic fun (a : 𝕜) => cs, G c a

              Eta-expanded form of Meromorphic.sum

              theorem Meromorphic.sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} (hf : Meromorphic f) (hg : Meromorphic g) :
              theorem Meromorphic.fun_sub {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} (hf : Meromorphic f) (hg : Meromorphic g) :
              Meromorphic fun (i : 𝕜) => f i - g i

              Eta-expanded form of Meromorphic.sub

              theorem Meromorphic.smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {g : 𝕜E} {f : 𝕜𝕜} (hf : Meromorphic f) (hg : Meromorphic g) :
              theorem Meromorphic.fun_smul {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {g : 𝕜E} {f : 𝕜𝕜} (hf : Meromorphic f) (hg : Meromorphic g) :
              Meromorphic fun (i : 𝕜) => f i g i

              Eta-expanded form of Meromorphic.smul

              theorem Meromorphic.mul {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f g : 𝕜𝕜'} (hf : Meromorphic f) (hg : Meromorphic g) :
              theorem Meromorphic.fun_mul {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f g : 𝕜𝕜'} (hf : Meromorphic f) (hg : Meromorphic g) :
              Meromorphic fun (i : 𝕜) => f i * g i

              Eta-expanded form of Meromorphic.mul

              theorem Meromorphic.inv {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f : 𝕜𝕜'} (hf : Meromorphic f) :
              theorem Meromorphic.fun_inv {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f : 𝕜𝕜'} (hf : Meromorphic f) :
              Meromorphic fun (i : 𝕜) => (f i)⁻¹

              Eta-expanded form of Meromorphic.inv

              theorem Meromorphic.prod {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {ι : Type u_4} {s : Finset ι} {F : ι𝕜𝕜'} (h : ∀ (σ : ι), Meromorphic (F σ)) :
              Meromorphic (∏ ns, F n)
              theorem Meromorphic.fun_prod {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {ι : Type u_4} {s : Finset ι} {F : ι𝕜𝕜'} (h : ∀ (σ : ι), Meromorphic (F σ)) :
              Meromorphic fun (a : 𝕜) => cs, F c a

              Eta-expanded form of Meromorphic.prod

              theorem Meromorphic.div {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f g : 𝕜𝕜'} (hf : Meromorphic f) (hg : Meromorphic g) :
              theorem Meromorphic.fun_div {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f g : 𝕜𝕜'} (hf : Meromorphic f) (hg : Meromorphic g) :
              Meromorphic fun (i : 𝕜) => f i / g i

              Eta-expanded form of Meromorphic.div

              theorem Meromorphic.pow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f : 𝕜𝕜'} {n : } (hf : Meromorphic f) :
              theorem Meromorphic.fun_pow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f : 𝕜𝕜'} {n : } (hf : Meromorphic f) :
              Meromorphic fun (i : 𝕜) => f i ^ n

              Eta-expanded form of Meromorphic.pow

              theorem Meromorphic.zpow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f : 𝕜𝕜'} {n : } (hf : Meromorphic f) :
              theorem Meromorphic.fun_zpow {𝕜 : Type u_1} {𝕜' : Type u_2} [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜'] {f : 𝕜𝕜'} {n : } (hf : Meromorphic f) :
              Meromorphic fun (i : 𝕜) => f i ^ n

              Eta-expanded form of Meromorphic.zpow

              theorem Meromorphic.deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} [CompleteSpace E] (hf : Meromorphic f) :
              theorem Meromorphic.iterated_deriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} [CompleteSpace E] {n : } (hf : Meromorphic f) :
              theorem Meromorphic.congr_codiscrete {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} (hf : Meromorphic f) (h₁ : f =ᶠ[Filter.codiscrete 𝕜] g) :

              If f is meromorphic, if g agrees with f on a codiscrete set, then g is also meromorphic.

              theorem meromorphic_congr_codiscrete {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f g : 𝕜E} (h₁ : f =ᶠ[Filter.codiscrete 𝕜] g) :

              If two functions differ only on a discrete set, then one is meromorphic iff so is the other.

              theorem Meromorphic.countable_compl_analyticAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} [SecondCountableTopology 𝕜] [CompleteSpace E] (h : Meromorphic f) :
              {z : 𝕜 | AnalyticAt 𝕜 f z}.Countable

              The singular set of a meromorphic function is countable.

              @[deprecated Meromorphic.countable_compl_analyticAt (since := "2025-12-21")]

              Alias of Meromorphic.countable_compl_analyticAt.


              The singular set of a meromorphic function is countable.

              @[deprecated Meromorphic.countable_compl_analyticAt (since := "2025-12-21")]
              theorem MeromorphicOn.countable_compl_analyticAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜E} [SecondCountableTopology 𝕜] [CompleteSpace E] (h : Meromorphic f) :
              {z : 𝕜 | AnalyticAt 𝕜 f z}.Countable

              Alias of Meromorphic.countable_compl_analyticAt.


              The singular set of a meromorphic function is countable.

              Meromorphic functions are measurable.

              @[deprecated Meromorphic.measurable (since := "2025-12-21")]

              Alias of Meromorphic.measurable.


              Meromorphic functions are measurable.

              @[deprecated Meromorphic.measurable (since := "2025-12-21")]

              Alias of Meromorphic.measurable.


              Meromorphic functions are measurable.