Documentation

Mathlib.Analysis.Fourier.AddCircleMulti

Multivariate Fourier series #

In this file we define the Fourier series of an Lยฒ function on the d-dimensional unit circle, and show that it converges to the function in the Lยฒ norm. We also prove uniform convergence of the Fourier series if f is continuous and the sequence of its Fourier coefficients is summable.

In this file we normalise the measure on โ„ / โ„ค to have total volume 1.

Equations
    Instances For
      @[reducible, inline]
      abbrev UnitAddTorus (d : Type u_1) :
      Type u_1

      The product of finitely many copies of the unit circle, indexed by d.

      Equations
        Instances For
          def UnitAddTorus.mFourier {d : Type u_1} [Fintype d] (n : d โ†’ โ„ค) :

          Exponential monomials in d variables.

          Equations
            Instances For
              theorem UnitAddTorus.mFourier_add {d : Type u_1} [Fintype d] {n : d โ†’ โ„ค} {x : UnitAddTorus d} {m : d โ†’ โ„ค} :
              (mFourier (m + n)) x = (mFourier m) x * (mFourier n) x
              theorem UnitAddTorus.mFourier_single {d : Type u_1} [Fintype d] [DecidableEq d] (z : d โ†’ AddCircle 1) (i : d) :
              (mFourier (Pi.single i 1)) z = (fourier 1) (z i)

              The star subalgebra of C(UnitAddTorus d, โ„‚) generated by mFourier n for n โˆˆ โ„คแตˆ.

              Equations
                Instances For

                  The star subalgebra of C(UnitAddTorus d, โ„‚) generated by mFourier n for n โˆˆ โ„คแตˆ is in fact the linear span of these functions.

                  The subalgebra of C(UnitAddTorus d, โ„‚) generated by mFourier n for n โˆˆ โ„คแตˆ separates points.

                  The subalgebra of C(UnitAddTorus d, โ„‚) generated by mFourier n for n : d โ†’ โ„ค is dense.

                  The linear span of the monomials mFourier n is dense in C(UnitAddTorus d, โ„‚).

                  @[reducible, inline]
                  abbrev UnitAddTorus.mFourierLp {d : Type u_1} [Fintype d] (p : ENNReal) [Fact (1 โ‰ค p)] (n : d โ†’ โ„ค) :

                  The family of monomials mFourier n, parametrized by n : โ„คแตˆ and considered as elements of the Lp space of functions UnitAddTorus d โ†’ โ„‚.

                  Equations
                    Instances For
                      theorem UnitAddTorus.coeFn_mFourierLp {d : Type u_1} [Fintype d] (p : ENNReal) [Fact (1 โ‰ค p)] (n : d โ†’ โ„ค) :
                      โ†‘โ†‘(mFourierLp p n) =แต[MeasureTheory.volume] โ‡‘(mFourier n)

                      For each 1 โ‰ค p < โˆž, the linear span of the monomials mFourier n is dense in the Lแต– space of functions on UnitAddTorus d.

                      The monomials mFourierLp 2 n are an orthonormal set in Lยฒ.

                      def UnitAddTorus.mFourierCoeff {d : Type u_1} [Fintype d] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace โ„‚ E] (f : UnitAddTorus d โ†’ E) (n : d โ†’ โ„ค) :
                      E

                      The n-th Fourier coefficient of a function UnitAddTorus d โ†’ E, for E a complete normed โ„‚-vector space, defined as the integral over UnitAddTorus d of mFourier (-n) t โ€ข f t.

                      Equations
                        Instances For

                          We define mFourierBasis to be a โ„คแตˆ-indexed Hilbert basis for the Lยฒ space of functions on UnitAddTorus d, which by definition is an isometric isomorphism from Lยฒ(UnitAddTorus d) to โ„“ยฒ(โ„คแตˆ, โ„‚).

                          Equations
                            Instances For
                              @[simp]

                              The elements of the Hilbert basis mFourierBasis are the functions mFourierLp 2, i.e. the monomials mFourier n on UnitAddTorus d considered as elements of Lยฒ.

                              theorem UnitAddTorus.mFourierBasis_repr {d : Type u_1} [Fintype d] (f : โ†ฅ(MeasureTheory.Lp โ„‚ 2 MeasureTheory.volume)) (i : d โ†’ โ„ค) :
                              โ†‘(mFourierBasis.repr f) i = mFourierCoeff (โ†‘โ†‘f) i

                              Under the isometric isomorphism mFourierBasis from Lยฒ(UnitAddTorus d) to โ„“ยฒ(โ„คแตˆ, โ„‚), the i-th coefficient is mFourierCoeff f i.

                              theorem UnitAddTorus.hasSum_mFourier_series_L2 {d : Type u_1} [Fintype d] (f : โ†ฅ(MeasureTheory.Lp โ„‚ 2 MeasureTheory.volume)) :
                              HasSum (fun (i : d โ†’ โ„ค) => mFourierCoeff (โ†‘โ†‘f) i โ€ข mFourierLp 2 i) f

                              The Fourier series of an L2 function f sums to f in the Lยฒ norm.

                              theorem UnitAddTorus.hasSum_prod_mFourierCoeff {d : Type u_1} [Fintype d] (f g : โ†ฅ(MeasureTheory.Lp โ„‚ 2 MeasureTheory.volume)) :
                              HasSum (fun (i : d โ†’ โ„ค) => (starRingEnd โ„‚) (mFourierCoeff (โ†‘โ†‘f) i) * mFourierCoeff (โ†‘โ†‘g) i) (โˆซ (t : UnitAddTorus d), (starRingEnd โ„‚) (โ†‘โ†‘f t) * โ†‘โ†‘g t)

                              Parseval's identity for inner products: for Lยฒ functions f, g on UnitAddTorus d, the inner product of the Fourier coefficients of f and g is the inner product of f and g.

                              theorem UnitAddTorus.hasSum_sq_mFourierCoeff {d : Type u_1} [Fintype d] (f : โ†ฅ(MeasureTheory.Lp โ„‚ 2 MeasureTheory.volume)) :
                              HasSum (fun (i : d โ†’ โ„ค) => โ€–mFourierCoeff (โ†‘โ†‘f) iโ€– ^ 2) (โˆซ (t : UnitAddTorus d), โ€–โ†‘โ†‘f tโ€– ^ 2)

                              Parseval's identity for norms: for an Lยฒ function f on UnitAddTorus d, the sum of the squared norms of the Fourier coefficients equals the Lยฒ norm of f.

                              theorem UnitAddTorus.hasSum_mFourier_series_of_summable {d : Type u_1} [Fintype d] {f : C(UnitAddTorus d, โ„‚)} (h : Summable (mFourierCoeff โ‡‘f)) :
                              HasSum (fun (i : d โ†’ โ„ค) => mFourierCoeff (โ‡‘f) i โ€ข mFourier i) f

                              If the sequence of Fourier coefficients of f is summable, then the Fourier series converges uniformly to f.

                              theorem UnitAddTorus.hasSum_mFourier_series_apply_of_summable {d : Type u_1} [Fintype d] {f : C(UnitAddTorus d, โ„‚)} (h : Summable (mFourierCoeff โ‡‘f)) (x : UnitAddTorus d) :
                              HasSum (fun (i : d โ†’ โ„ค) => mFourierCoeff (โ‡‘f) i โ€ข (mFourier i) x) (f x)

                              If the sequence of Fourier coefficients of f is summable, then the Fourier series of f converges everywhere pointwise to f.