Documentation

Mathlib.Analysis.Normed.Group.Uniform

Normed groups are uniform groups #

This file proves lipschitzness of normed group operations and shows that normed groups are uniform groups.

theorem Isometry.norm_map_of_map_one {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {f : E โ†’ F} (hi : Isometry f) (hโ‚ : f 1 = 1) (x : E) :
theorem Isometry.norm_map_of_map_zero {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {f : E โ†’ F} (hi : Isometry f) (hโ‚ : f 0 = 0) (x : E) :
@[simp]
theorem norm_map' {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [IsometryClass ๐“• E F] [OneHomClass ๐“• E F] (f : ๐“•) (x : E) :
@[simp]
theorem norm_map {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [IsometryClass ๐“• E F] [ZeroHomClass ๐“• E F] (f : ๐“•) (x : E) :
@[simp]
theorem nnnorm_map' {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [IsometryClass ๐“• E F] [OneHomClass ๐“• E F] (f : ๐“•) (x : E) :
@[simp]
theorem nnnorm_map {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [IsometryClass ๐“• E F] [ZeroHomClass ๐“• E F] (f : ๐“•) (x : E) :
@[simp]
theorem dist_mul_self_right {E : Type u_2} [SeminormedGroup E] (a b : E) :
@[simp]
theorem dist_add_self_right {E : Type u_2} [SeminormedAddGroup E] (a b : E) :
@[simp]
theorem dist_mul_self_left {E : Type u_2} [SeminormedGroup E] (a b : E) :
@[simp]
theorem dist_add_self_left {E : Type u_2} [SeminormedAddGroup E] (a b : E) :
@[simp]
theorem dist_div_eq_dist_mul_left {E : Type u_2} [SeminormedGroup E] (a b c : E) :
dist (a / b) c = dist a (c * b)
@[simp]
theorem dist_sub_eq_dist_add_left {E : Type u_2} [SeminormedAddGroup E] (a b c : E) :
dist (a - b) c = dist a (c + b)
@[simp]
theorem dist_div_eq_dist_mul_right {E : Type u_2} [SeminormedGroup E] (a b c : E) :
dist a (b / c) = dist (a * c) b
@[simp]
theorem dist_sub_eq_dist_add_right {E : Type u_2} [SeminormedAddGroup E] (a b c : E) :
dist a (b - c) = dist (a + c) b
theorem MonoidHomClass.lipschitz_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] (f : ๐“•) (C : โ„) (h : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–xโ€–) :

A homomorphism f of seminormed groups is Lipschitz, if there exists a constant C such that for all x, one has โ€–f xโ€– โ‰ค C * โ€–xโ€–. The analogous condition for a linear map of (semi)normed spaces is in Mathlib/Analysis/Normed/Operator/Basic.lean.

theorem AddMonoidHomClass.lipschitz_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] (f : ๐“•) (C : โ„) (h : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–xโ€–) :

A homomorphism f of seminormed groups is Lipschitz, if there exists a constant C such that for all x, one has โ€–f xโ€– โ‰ค C * โ€–xโ€–. The analogous condition for a linear map of (semi)normed spaces is in Mathlib/Analysis/Normed/Operator/Basic.lean.

theorem lipschitzOnWith_iff_norm_div_le {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {s : Set E} {f : E โ†’ F} {C : NNReal} :
LipschitzOnWith C f s โ†” โˆ€ โฆƒx : Eโฆ„, x โˆˆ s โ†’ โˆ€ โฆƒy : Eโฆ„, y โˆˆ s โ†’ โ€–f x / f yโ€– โ‰ค โ†‘C * โ€–x / yโ€–
theorem lipschitzOnWith_iff_norm_sub_le {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {s : Set E} {f : E โ†’ F} {C : NNReal} :
LipschitzOnWith C f s โ†” โˆ€ โฆƒx : Eโฆ„, x โˆˆ s โ†’ โˆ€ โฆƒy : Eโฆ„, y โˆˆ s โ†’ โ€–f x - f yโ€– โ‰ค โ†‘C * โ€–x - yโ€–
theorem LipschitzOnWith.norm_div_le {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {s : Set E} {f : E โ†’ F} {C : NNReal} :
LipschitzOnWith C f s โ†’ โˆ€ โฆƒx : Eโฆ„, x โˆˆ s โ†’ โˆ€ โฆƒy : Eโฆ„, y โˆˆ s โ†’ โ€–f x / f yโ€– โ‰ค โ†‘C * โ€–x / yโ€–

Alias of the forward direction of lipschitzOnWith_iff_norm_div_le.

theorem LipschitzOnWith.norm_sub_le {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {s : Set E} {f : E โ†’ F} {C : NNReal} :
LipschitzOnWith C f s โ†’ โˆ€ โฆƒx : Eโฆ„, x โˆˆ s โ†’ โˆ€ โฆƒy : Eโฆ„, y โˆˆ s โ†’ โ€–f x - f yโ€– โ‰ค โ†‘C * โ€–x - yโ€–
theorem LipschitzOnWith.norm_div_le_of_le {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {s : Set E} {a b : E} {r : โ„} {f : E โ†’ F} {C : NNReal} (h : LipschitzOnWith C f s) (ha : a โˆˆ s) (hb : b โˆˆ s) (hr : โ€–a / bโ€– โ‰ค r) :
โ€–f a / f bโ€– โ‰ค โ†‘C * r
theorem LipschitzOnWith.norm_sub_le_of_le {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {s : Set E} {a b : E} {r : โ„} {f : E โ†’ F} {C : NNReal} (h : LipschitzOnWith C f s) (ha : a โˆˆ s) (hb : b โˆˆ s) (hr : โ€–a - bโ€– โ‰ค r) :
โ€–f a - f bโ€– โ‰ค โ†‘C * r
theorem lipschitzWith_iff_norm_div_le {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {f : E โ†’ F} {C : NNReal} :
LipschitzWith C f โ†” โˆ€ (x y : E), โ€–f x / f yโ€– โ‰ค โ†‘C * โ€–x / yโ€–
theorem lipschitzWith_iff_norm_sub_le {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {f : E โ†’ F} {C : NNReal} :
LipschitzWith C f โ†” โˆ€ (x y : E), โ€–f x - f yโ€– โ‰ค โ†‘C * โ€–x - yโ€–
theorem LipschitzWith.norm_div_le {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {f : E โ†’ F} {C : NNReal} :
LipschitzWith C f โ†’ โˆ€ (x y : E), โ€–f x / f yโ€– โ‰ค โ†‘C * โ€–x / yโ€–

Alias of the forward direction of lipschitzWith_iff_norm_div_le.

theorem LipschitzWith.norm_sub_le {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {f : E โ†’ F} {C : NNReal} :
LipschitzWith C f โ†’ โˆ€ (x y : E), โ€–f x - f yโ€– โ‰ค โ†‘C * โ€–x - yโ€–
theorem LipschitzWith.norm_div_le_of_le {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {a b : E} {r : โ„} {f : E โ†’ F} {C : NNReal} (h : LipschitzWith C f) (hr : โ€–a / bโ€– โ‰ค r) :
โ€–f a / f bโ€– โ‰ค โ†‘C * r
theorem LipschitzWith.norm_sub_le_of_le {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {a b : E} {r : โ„} {f : E โ†’ F} {C : NNReal} (h : LipschitzWith C f) (hr : โ€–a - bโ€– โ‰ค r) :
โ€–f a - f bโ€– โ‰ค โ†‘C * r
theorem MonoidHomClass.continuous_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] (f : ๐“•) (C : โ„) (h : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–xโ€–) :
Continuous โ‡‘f

A homomorphism f of seminormed groups is continuous, if there exists a constant C such that for all x, one has โ€–f xโ€– โ‰ค C * โ€–xโ€–.

theorem AddMonoidHomClass.continuous_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] (f : ๐“•) (C : โ„) (h : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–xโ€–) :
Continuous โ‡‘f

A homomorphism f of seminormed groups is continuous, if there exists a constant C such that for all x, one has โ€–f xโ€– โ‰ค C * โ€–xโ€–.

theorem MonoidHomClass.uniformContinuous_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] (f : ๐“•) (C : โ„) (h : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–xโ€–) :
theorem AddMonoidHomClass.uniformContinuous_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] (f : ๐“•) (C : โ„) (h : โˆ€ (x : E), โ€–f xโ€– โ‰ค C * โ€–xโ€–) :
theorem MonoidHomClass.isometry_iff_norm {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] (f : ๐“•) :
Isometry โ‡‘f โ†” โˆ€ (x : E), โ€–f xโ€– = โ€–xโ€–
theorem AddMonoidHomClass.isometry_iff_norm {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] (f : ๐“•) :
Isometry โ‡‘f โ†” โˆ€ (x : E), โ€–f xโ€– = โ€–xโ€–
theorem MonoidHomClass.isometry_of_norm {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] (f : ๐“•) :
(โˆ€ (x : E), โ€–f xโ€– = โ€–xโ€–) โ†’ Isometry โ‡‘f

Alias of the reverse direction of MonoidHomClass.isometry_iff_norm.

theorem AddMonoidHomClass.isometry_of_norm {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] (f : ๐“•) :
(โˆ€ (x : E), โ€–f xโ€– = โ€–xโ€–) โ†’ Isometry โ‡‘f
theorem MonoidHomClass.lipschitz_of_bound_nnnorm {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] (f : ๐“•) (C : NNReal) (h : โˆ€ (x : E), โ€–f xโ€–โ‚Š โ‰ค C * โ€–xโ€–โ‚Š) :
LipschitzWith C โ‡‘f
theorem AddMonoidHomClass.lipschitz_of_bound_nnnorm {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] (f : ๐“•) (C : NNReal) (h : โˆ€ (x : E), โ€–f xโ€–โ‚Š โ‰ค C * โ€–xโ€–โ‚Š) :
LipschitzWith C โ‡‘f
theorem MonoidHomClass.antilipschitz_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] (f : ๐“•) {K : NNReal} (h : โˆ€ (x : E), โ€–xโ€– โ‰ค โ†‘K * โ€–f xโ€–) :
theorem AddMonoidHomClass.antilipschitz_of_bound {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] (f : ๐“•) {K : NNReal} (h : โˆ€ (x : E), โ€–xโ€– โ‰ค โ†‘K * โ€–f xโ€–) :
theorem LipschitzWith.norm_le_mul' {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {f : E โ†’ F} {K : NNReal} (h : LipschitzWith K f) (hf : f 1 = 1) (x : E) :
theorem LipschitzWith.norm_le_mul {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {f : E โ†’ F} {K : NNReal} (h : LipschitzWith K f) (hf : f 0 = 0) (x : E) :
theorem LipschitzWith.nnorm_le_mul' {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {f : E โ†’ F} {K : NNReal} (h : LipschitzWith K f) (hf : f 1 = 1) (x : E) :
theorem LipschitzWith.nnorm_le_mul {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {f : E โ†’ F} {K : NNReal} (h : LipschitzWith K f) (hf : f 0 = 0) (x : E) :
theorem AntilipschitzWith.le_mul_norm' {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {f : E โ†’ F} {K : NNReal} (h : AntilipschitzWith K f) (hf : f 1 = 1) (x : E) :
theorem AntilipschitzWith.le_mul_norm {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {f : E โ†’ F} {K : NNReal} (h : AntilipschitzWith K f) (hf : f 0 = 0) (x : E) :
theorem antilipschitzWith_iff_exists_mul_le_norm' {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [MonoidHomClass ๐“• E F] {f : ๐“•} :
(โˆƒ (K : NNReal), AntilipschitzWith K โ‡‘f) โ†” โˆƒ c > 0, โˆ€ (x : E), c * โ€–xโ€– โ‰ค โ€–f xโ€–
theorem antilipschitzWith_iff_exists_mul_le_norm {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [AddMonoidHomClass ๐“• E F] {f : ๐“•} :
(โˆƒ (K : NNReal), AntilipschitzWith K โ‡‘f) โ†” โˆƒ c > 0, โˆ€ (x : E), c * โ€–xโ€– โ‰ค โ€–f xโ€–
theorem OneHomClass.bound_of_antilipschitz {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] [FunLike ๐“• E F] [OneHomClass ๐“• E F] (f : ๐“•) {K : NNReal} (h : AntilipschitzWith K โ‡‘f) (x : E) :
theorem ZeroHomClass.bound_of_antilipschitz {๐“• : Type u_1} {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] [FunLike ๐“• E F] [ZeroHomClass ๐“• E F] (f : ๐“•) {K : NNReal} (h : AntilipschitzWith K โ‡‘f) (x : E) :
theorem Isometry.nnnorm_map_of_map_one {E : Type u_2} {F : Type u_3} [SeminormedGroup E] [SeminormedGroup F] {f : E โ†’ F} (hi : Isometry f) (hโ‚ : f 1 = 1) (x : E) :
theorem Isometry.nnnorm_map_of_map_zero {E : Type u_2} {F : Type u_3} [SeminormedAddGroup E] [SeminormedAddGroup F] {f : E โ†’ F} (hi : Isometry f) (hโ‚ : f 0 = 0) (x : E) :
@[simp]
theorem dist_self_mul_right {E : Type u_2} [SeminormedCommGroup E] (a b : E) :
@[simp]
theorem dist_self_mul_left {E : Type u_2} [SeminormedCommGroup E] (a b : E) :
@[simp]
theorem dist_self_div_right {E : Type u_2} [SeminormedCommGroup E] (a b : E) :
@[simp]
theorem dist_self_div_left {E : Type u_2} [SeminormedCommGroup E] (a b : E) :
theorem dist_mul_mul_le {E : Type u_2} [SeminormedCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
dist (aโ‚ * aโ‚‚) (bโ‚ * bโ‚‚) โ‰ค dist aโ‚ bโ‚ + dist aโ‚‚ bโ‚‚
theorem dist_add_add_le {E : Type u_2} [SeminormedAddCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
dist (aโ‚ + aโ‚‚) (bโ‚ + bโ‚‚) โ‰ค dist aโ‚ bโ‚ + dist aโ‚‚ bโ‚‚
theorem dist_mul_mul_le_of_le {E : Type u_2} [SeminormedCommGroup E] {aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E} {rโ‚ rโ‚‚ : โ„} (hโ‚ : dist aโ‚ bโ‚ โ‰ค rโ‚) (hโ‚‚ : dist aโ‚‚ bโ‚‚ โ‰ค rโ‚‚) :
dist (aโ‚ * aโ‚‚) (bโ‚ * bโ‚‚) โ‰ค rโ‚ + rโ‚‚
theorem dist_add_add_le_of_le {E : Type u_2} [SeminormedAddCommGroup E] {aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E} {rโ‚ rโ‚‚ : โ„} (hโ‚ : dist aโ‚ bโ‚ โ‰ค rโ‚) (hโ‚‚ : dist aโ‚‚ bโ‚‚ โ‰ค rโ‚‚) :
dist (aโ‚ + aโ‚‚) (bโ‚ + bโ‚‚) โ‰ค rโ‚ + rโ‚‚
theorem dist_div_div_le {E : Type u_2} [SeminormedCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
dist (aโ‚ / aโ‚‚) (bโ‚ / bโ‚‚) โ‰ค dist aโ‚ bโ‚ + dist aโ‚‚ bโ‚‚
theorem dist_sub_sub_le {E : Type u_2} [SeminormedAddCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
dist (aโ‚ - aโ‚‚) (bโ‚ - bโ‚‚) โ‰ค dist aโ‚ bโ‚ + dist aโ‚‚ bโ‚‚
theorem dist_div_div_le_of_le {E : Type u_2} [SeminormedCommGroup E] {aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E} {rโ‚ rโ‚‚ : โ„} (hโ‚ : dist aโ‚ bโ‚ โ‰ค rโ‚) (hโ‚‚ : dist aโ‚‚ bโ‚‚ โ‰ค rโ‚‚) :
dist (aโ‚ / aโ‚‚) (bโ‚ / bโ‚‚) โ‰ค rโ‚ + rโ‚‚
theorem dist_sub_sub_le_of_le {E : Type u_2} [SeminormedAddCommGroup E] {aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E} {rโ‚ rโ‚‚ : โ„} (hโ‚ : dist aโ‚ bโ‚ โ‰ค rโ‚) (hโ‚‚ : dist aโ‚‚ bโ‚‚ โ‰ค rโ‚‚) :
dist (aโ‚ - aโ‚‚) (bโ‚ - bโ‚‚) โ‰ค rโ‚ + rโ‚‚
theorem abs_dist_sub_le_dist_mul_mul {E : Type u_2} [SeminormedCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
|dist aโ‚ bโ‚ - dist aโ‚‚ bโ‚‚| โ‰ค dist (aโ‚ * aโ‚‚) (bโ‚ * bโ‚‚)
theorem abs_dist_sub_le_dist_add_add {E : Type u_2} [SeminormedAddCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
|dist aโ‚ bโ‚ - dist aโ‚‚ bโ‚‚| โ‰ค dist (aโ‚ + aโ‚‚) (bโ‚ + bโ‚‚)
theorem nndist_mul_mul_le {E : Type u_2} [SeminormedCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
nndist (aโ‚ * aโ‚‚) (bโ‚ * bโ‚‚) โ‰ค nndist aโ‚ bโ‚ + nndist aโ‚‚ bโ‚‚
theorem nndist_add_add_le {E : Type u_2} [SeminormedAddCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
nndist (aโ‚ + aโ‚‚) (bโ‚ + bโ‚‚) โ‰ค nndist aโ‚ bโ‚ + nndist aโ‚‚ bโ‚‚
theorem edist_mul_mul_le {E : Type u_2} [SeminormedCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
edist (aโ‚ * aโ‚‚) (bโ‚ * bโ‚‚) โ‰ค edist aโ‚ bโ‚ + edist aโ‚‚ bโ‚‚
theorem edist_add_add_le {E : Type u_2} [SeminormedAddCommGroup E] (aโ‚ aโ‚‚ bโ‚ bโ‚‚ : E) :
edist (aโ‚ + aโ‚‚) (bโ‚ + bโ‚‚) โ‰ค edist aโ‚ bโ‚ + edist aโ‚‚ bโ‚‚
@[simp]
theorem lipschitzWith_inv_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :
@[simp]
theorem lipschitzWith_neg_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :
@[simp]
theorem antilipschitzWith_neg_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :
@[simp]
theorem lipschitzOnWith_inv_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
@[simp]
theorem lipschitzOnWith_neg_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
@[simp]
theorem locallyLipschitz_neg_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} :
@[simp]
theorem locallyLipschitzOn_inv_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
@[simp]
theorem locallyLipschitzOn_neg_iff {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
theorem LipschitzWith.of_inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :

Alias of the forward direction of lipschitzWith_inv_iff.

theorem LipschitzWith.inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :

Alias of the reverse direction of lipschitzWith_inv_iff.

theorem LipschitzWith.of_neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :
LipschitzWith K (-f) โ†’ LipschitzWith K f
theorem LipschitzWith.neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :
LipschitzWith K f โ†’ LipschitzWith K (-f)
theorem AntilipschitzWith.inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :

Alias of the reverse direction of antilipschitzWith_inv_iff.

theorem AntilipschitzWith.of_inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :

Alias of the forward direction of antilipschitzWith_inv_iff.

theorem AntilipschitzWith.neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :
theorem AntilipschitzWith.of_neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} :
theorem LipschitzOnWith.of_inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} {s : Set ฮฑ} :

Alias of the forward direction of lipschitzOnWith_inv_iff.

theorem LipschitzOnWith.inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} {s : Set ฮฑ} :

Alias of the reverse direction of lipschitzOnWith_inv_iff.

theorem LipschitzOnWith.neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
LipschitzOnWith K f s โ†’ LipschitzOnWith K (-f) s
theorem LipschitzOnWith.of_neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {K : NNReal} {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
LipschitzOnWith K (-f) s โ†’ LipschitzOnWith K f s
theorem LocallyLipschitz.of_inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} :

Alias of the forward direction of locallyLipschitz_inv_iff.

theorem LocallyLipschitz.inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} :

Alias of the reverse direction of locallyLipschitz_inv_iff.

theorem LocallyLipschitz.neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} :
theorem LocallyLipschitz.of_neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} :
theorem LocallyLipschitzOn.inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} :

Alias of the reverse direction of locallyLipschitzOn_inv_iff.

theorem LocallyLipschitzOn.of_inv {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} :

Alias of the forward direction of locallyLipschitzOn_inv_iff.

theorem LocallyLipschitzOn.of_neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
theorem LocallyLipschitzOn.neg {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f : ฮฑ โ†’ E} {s : Set ฮฑ} :
theorem LipschitzOnWith.mul {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LipschitzOnWith Kf f s) (hg : LipschitzOnWith Kg g s) :
LipschitzOnWith (Kf + Kg) (fun (x : ฮฑ) => f x * g x) s
theorem LipschitzOnWith.add {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LipschitzOnWith Kf f s) (hg : LipschitzOnWith Kg g s) :
LipschitzOnWith (Kf + Kg) (fun (x : ฮฑ) => f x + g x) s
theorem LipschitzWith.mul {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : LipschitzWith Kf f) (hg : LipschitzWith Kg g) :
LipschitzWith (Kf + Kg) fun (x : ฮฑ) => f x * g x
theorem LipschitzWith.add {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : LipschitzWith Kf f) (hg : LipschitzWith Kg g) :
LipschitzWith (Kf + Kg) fun (x : ฮฑ) => f x + g x
theorem LocallyLipschitzOn.mul {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LocallyLipschitzOn s f) (hg : LocallyLipschitzOn s g) :
LocallyLipschitzOn s fun (x : ฮฑ) => f x * g x
theorem LocallyLipschitzOn.add {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LocallyLipschitzOn s f) (hg : LocallyLipschitzOn s g) :
LocallyLipschitzOn s fun (x : ฮฑ) => f x + g x
theorem LocallyLipschitz.mul {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} (hf : LocallyLipschitz f) (hg : LocallyLipschitz g) :
LocallyLipschitz fun (x : ฮฑ) => f x * g x
theorem LocallyLipschitz.add {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} (hf : LocallyLipschitz f) (hg : LocallyLipschitz g) :
LocallyLipschitz fun (x : ฮฑ) => f x + g x
theorem LipschitzOnWith.div {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LipschitzOnWith Kf f s) (hg : LipschitzOnWith Kg g s) :
LipschitzOnWith (Kf + Kg) (fun (x : ฮฑ) => f x / g x) s
theorem LipschitzOnWith.sub {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LipschitzOnWith Kf f s) (hg : LipschitzOnWith Kg g s) :
LipschitzOnWith (Kf + Kg) (fun (x : ฮฑ) => f x - g x) s
theorem LipschitzWith.div {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : LipschitzWith Kf f) (hg : LipschitzWith Kg g) :
LipschitzWith (Kf + Kg) fun (x : ฮฑ) => f x / g x
theorem LipschitzWith.sub {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : LipschitzWith Kf f) (hg : LipschitzWith Kg g) :
LipschitzWith (Kf + Kg) fun (x : ฮฑ) => f x - g x
theorem LocallyLipschitzOn.div {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LocallyLipschitzOn s f) (hg : LocallyLipschitzOn s g) :
LocallyLipschitzOn s fun (x : ฮฑ) => f x / g x
theorem LocallyLipschitzOn.sub {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} {s : Set ฮฑ} (hf : LocallyLipschitzOn s f) (hg : LocallyLipschitzOn s g) :
LocallyLipschitzOn s fun (x : ฮฑ) => f x - g x
theorem LocallyLipschitz.div {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} (hf : LocallyLipschitz f) (hg : LocallyLipschitz g) :
LocallyLipschitz fun (x : ฮฑ) => f x / g x
theorem LocallyLipschitz.sub {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {f g : ฮฑ โ†’ E} (hf : LocallyLipschitz f) (hg : LocallyLipschitz g) :
LocallyLipschitz fun (x : ฮฑ) => f x - g x
theorem AntilipschitzWith.mul_lipschitzWith {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : AntilipschitzWith Kf f) (hg : LipschitzWith Kg g) (hK : Kg < Kfโปยน) :
AntilipschitzWith (Kfโปยน - Kg)โปยน fun (x : ฮฑ) => f x * g x
theorem AntilipschitzWith.add_lipschitzWith {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : AntilipschitzWith Kf f) (hg : LipschitzWith Kg g) (hK : Kg < Kfโปยน) :
AntilipschitzWith (Kfโปยน - Kg)โปยน fun (x : ฮฑ) => f x + g x
theorem AntilipschitzWith.mul_div_lipschitzWith {ฮฑ : Type u_4} {E : Type u_5} [SeminormedCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : AntilipschitzWith Kf f) (hg : LipschitzWith Kg (g / f)) (hK : Kg < Kfโปยน) :
theorem AntilipschitzWith.add_sub_lipschitzWith {ฮฑ : Type u_4} {E : Type u_5} [SeminormedAddCommGroup E] [PseudoEMetricSpace ฮฑ] {Kf Kg : NNReal} {f g : ฮฑ โ†’ E} (hf : AntilipschitzWith Kf f) (hg : LipschitzWith Kg (g - f)) (hK : Kg < Kfโปยน) :
theorem AntilipschitzWith.le_mul_norm_div {F : Type u_3} [SeminormedCommGroup F] {E : Type u_5} [SeminormedCommGroup E] {K : NNReal} {f : E โ†’ F} (hf : AntilipschitzWith K f) (x y : E) :
theorem AntilipschitzWith.le_mul_norm_sub {F : Type u_3} [SeminormedAddCommGroup F] {E : Type u_5} [SeminormedAddCommGroup E] {K : NNReal} {f : E โ†’ F} (hf : AntilipschitzWith K f) (x y : E) :
@[instance 100]

A seminormed group is a uniform group, i.e., multiplication and division are uniformly continuous.

@[instance 100]

A seminormed group is a uniform additive group, i.e., addition and subtraction are uniformly continuous.

SeparationQuotient #

theorem cauchySeq_prod_of_eventually_eq {E : Type u_2} [SeminormedCommGroup E] {u v : โ„• โ†’ E} {N : โ„•} (huv : โˆ€ n โ‰ฅ N, u n = v n) (hv : CauchySeq fun (n : โ„•) => โˆ k โˆˆ Finset.range (n + 1), v k) :
CauchySeq fun (n : โ„•) => โˆ k โˆˆ Finset.range (n + 1), u k
theorem cauchySeq_sum_of_eventually_eq {E : Type u_2} [SeminormedAddCommGroup E] {u v : โ„• โ†’ E} {N : โ„•} (huv : โˆ€ n โ‰ฅ N, u n = v n) (hv : CauchySeq fun (n : โ„•) => โˆ‘ k โˆˆ Finset.range (n + 1), v k) :
CauchySeq fun (n : โ„•) => โˆ‘ k โˆˆ Finset.range (n + 1), u k