Documentation

Mathlib.Analysis.Normed.Module.Convex

Metric properties of convex sets in normed spaces #

We prove the following facts:

The norm on a real normed space is convex on any convex set. See also Seminorm.convexOn and convexOn_univ_norm.

The norm on a real normed space is convex on the whole space. See also Seminorm.convexOn and convexOn_norm.

theorem convexOn_dist {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace โ„ E] {s : Set E} (z : E) (hs : Convex โ„ s) :
ConvexOn โ„ s fun (z' : E) => dist z' z

The segment from x to y is contained in the closed ball centered at x with radius dist x y.

The segment from x to y is contained in the closed ball centered at y with radius dist x y.

theorem convexHull_exists_dist_ge {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace โ„ E] {s : Set E} {x : E} (hx : x โˆˆ (convexHull โ„) s) (y : E) :
โˆƒ x' โˆˆ s, dist x y โ‰ค dist x' y

Given a point x in the convex hull of s and a point y, there exists a point of s at distance at least dist x y from y.

theorem convexHull_exists_dist_ge2 {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace โ„ E] {s t : Set E} {x y : E} (hx : x โˆˆ (convexHull โ„) s) (hy : y โˆˆ (convexHull โ„) t) :
โˆƒ x' โˆˆ s, โˆƒ y' โˆˆ t, dist x y โ‰ค dist x' y'

Given a point x in the convex hull of s and a point y in the convex hull of t, there exist points x' โˆˆ s and y' โˆˆ t at distance at least dist x y.

@[simp]

Emetric diameter of the convex hull of a set s equals the emetric diameter of s.

@[simp]

Diameter of the convex hull of a set s equals the emetric diameter of s.

@[simp]

Convex hull of s is bounded if and only if s is bounded.

The set of vectors in the same ray as x is connected.

The set of nonzero vectors in the same ray as the nonzero vector x is connected.

theorem Filter.Eventually.segment_of_prod_nhds {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace โ„ E] {ฮฑ : Type u_2} {f : Filter ฮฑ} {x : E} {y z : ฮฑ โ†’ E} {r : ฮฑ โ†’ E โ†’ Prop} (hy : Tendsto y f (nhds x)) (hz : Tendsto z f (nhds x)) (hr : โˆ€แถ  (p : ฮฑ ร— E) in f ร—หข nhds x, r p.1 p.2) :
โˆ€แถ  (ฯ‡ : ฮฑ) in f, โˆ€ v โˆˆ segment โ„ (y ฯ‡) (z ฯ‡), r ฯ‡ v
theorem Filter.Eventually.segment_of_prod_nhdsWithin {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace โ„ E] {s : Set E} {ฮฑ : Type u_2} {f : Filter ฮฑ} {x : E} {y z : ฮฑ โ†’ E} {r : ฮฑ โ†’ E โ†’ Prop} (hy : Tendsto y f (nhds x)) (hz : Tendsto z f (nhds x)) (hr : โˆ€แถ  (p : ฮฑ ร— E) in f ร—หข nhdsWithin x s, r p.1 p.2) (seg : โˆ€แถ  (ฯ‡ : ฮฑ) in f, segment โ„ (y ฯ‡) (z ฯ‡) โІ s) :
โˆ€แถ  (ฯ‡ : ฮฑ) in f, โˆ€ v โˆˆ segment โ„ (y ฯ‡) (z ฯ‡), r ฯ‡ v