Documentation

Mathlib.Topology.EMetricSpace.Diam

Diameters of sets in extended metric spaces #

In this file we define the diameter of a set in the extended metric space as an extended nonnegative real number.

noncomputable def Metric.ediam {X : Type u_2} [PseudoEMetricSpace X] (s : Set X) :

The diameter of a set in a pseudoemetric space as an extended nonnegative real number.

Equations
    Instances For
      theorem Metric.ediam_le_iff {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} :
      ediam s d xs, ys, edist x y d
      theorem Metric.ediam_image_le_iff {α : Type u_1} {X : Type u_2} [PseudoEMetricSpace X] {d : ENNReal} {f : αX} {s : Set α} :
      ediam (f '' s) d xs, ys, edist (f x) (f y) d
      theorem Metric.edist_le_of_ediam_le {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] {d : ENNReal} (hx : x s) (hy : y s) (hd : ediam s d) :
      edist x y d
      theorem Metric.edist_le_ediam_of_mem {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] (hx : x s) (hy : y s) :

      If two points belong to some set, their edistance is bounded by the diameter of the set

      theorem Metric.ediam_le {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} (h : xs, ys, edist x y d) :

      If the distance between any two points in a set is bounded by some constant, this constant bounds the diameter.

      theorem Metric.ediam_subsingleton {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] (hs : s.Subsingleton) :
      ediam s = 0

      The diameter of a subsingleton vanishes.

      theorem Set.Subsingleton.ediam_eq {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] (hs : s.Subsingleton) :

      Alias of Metric.ediam_subsingleton.


      The diameter of a subsingleton vanishes.

      @[simp]

      The diameter of the empty set vanishes

      @[simp]
      theorem Metric.ediam_singleton {X : Type u_2} {x : X} [PseudoEMetricSpace X] :

      The extended diameter of a singleton vanishes

      @[simp]
      theorem Metric.ediam_one {X : Type u_2} [PseudoEMetricSpace X] [One X] :
      ediam 1 = 0
      @[simp]
      theorem Metric.ediam_zero {X : Type u_2} [PseudoEMetricSpace X] [Zero X] :
      ediam 0 = 0
      theorem Metric.ediam_iUnion_mem_option {X : Type u_2} [PseudoEMetricSpace X] {ι : Type u_3} (o : Option ι) (s : ιSet X) :
      ediam (⋃ io, s i) = io, ediam (s i)
      theorem Metric.ediam_insert {X : Type u_2} {s : Set X} {x : X} [PseudoEMetricSpace X] :
      ediam (insert x s) = max (⨆ ys, edist x y) (ediam s)
      theorem Metric.ediam_pair {X : Type u_2} {x y : X} [PseudoEMetricSpace X] :
      ediam {x, y} = edist x y
      theorem Metric.ediam_triple {X : Type u_2} {x y z : X} [PseudoEMetricSpace X] :
      ediam {x, y, z} = max (max (edist x y) (edist x z)) (edist y z)
      theorem Metric.ediam_mono {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : s t) :

      The extended diameter is monotonous with respect to inclusion

      theorem Metric.ediam_union_le_add_edist {X : Type u_2} {s t : Set X} {x y : X} [PseudoEMetricSpace X] (xs : x s) (yt : y t) :
      ediam (s t) ediam s + edist x y + ediam t

      The extended diameter of a union is controlled by the diameter of the sets, and the edistance between two points in the sets.

      theorem Metric.ediam_union_le {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : (s t).Nonempty) :
      ediam (s t) ediam s + ediam t

      If two sets have nonempty intersection, then the extended diameter of their union is estimated from above by the sum of their union.

      theorem Metric.ediam_eball_le {X : Type u_2} {x : X} [PseudoEMetricSpace X] {r : ENNReal} :
      ediam (eball x r) 2 * r
      theorem Metric.ediam_pi_le_of_le {ι : Type u_3} {X : ιType u_4} [Fintype ι] [(i : ι) → PseudoEMetricSpace (X i)] {s : (i : ι) → Set (X i)} {c : ENNReal} (h : ∀ (b : ι), ediam (s b) c) :
      theorem Metric.ediam_pos_iff' {X : Type u_2} {s : Set X} [EMetricSpace X] :
      0 < ediam s xs, ys, x y
      @[deprecated Metric.ediam (since := "2026-01-04")]
      def EMetric.diam {X : Type u_2} [PseudoEMetricSpace X] (s : Set X) :

      Alias of Metric.ediam.


      The diameter of a set in a pseudoemetric space as an extended nonnegative real number.

      Equations
        Instances For
          @[deprecated Metric.ediam_eq_sSup (since := "2026-01-04")]

          Alias of Metric.ediam_eq_sSup.

          @[deprecated Metric.ediam_le_iff (since := "2026-01-04")]
          theorem EMetric.diam_le_iff {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} :
          Metric.ediam s d xs, ys, edist x y d

          Alias of Metric.ediam_le_iff.

          @[deprecated Metric.ediam_image_le_iff (since := "2026-01-04")]
          theorem EMetric.diam_image_le_iff {α : Type u_1} {X : Type u_2} [PseudoEMetricSpace X] {d : ENNReal} {f : αX} {s : Set α} :
          Metric.ediam (f '' s) d xs, ys, edist (f x) (f y) d

          Alias of Metric.ediam_image_le_iff.

          @[deprecated Metric.edist_le_of_ediam_le (since := "2026-01-04")]
          theorem EMetric.edist_le_of_diam_le {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] {d : ENNReal} (hx : x s) (hy : y s) (hd : Metric.ediam s d) :
          edist x y d

          Alias of Metric.edist_le_of_ediam_le.

          @[deprecated Metric.edist_le_ediam_of_mem (since := "2026-01-04")]
          theorem EMetric.edist_le_diam_of_mem {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] (hx : x s) (hy : y s) :

          Alias of Metric.edist_le_ediam_of_mem.


          If two points belong to some set, their edistance is bounded by the diameter of the set

          @[deprecated Metric.ediam_le (since := "2026-01-04")]
          theorem EMetric.diam_le {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} (h : xs, ys, edist x y d) :

          Alias of Metric.ediam_le.


          If the distance between any two points in a set is bounded by some constant, this constant bounds the diameter.

          @[deprecated Metric.ediam_subsingleton (since := "2026-01-04")]
          theorem EMetric.diam_subsingleton {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] (hs : s.Subsingleton) :

          Alias of Metric.ediam_subsingleton.


          The diameter of a subsingleton vanishes.

          @[deprecated Metric.ediam_empty (since := "2026-01-04")]

          Alias of Metric.ediam_empty.


          The diameter of the empty set vanishes

          @[deprecated Metric.ediam_singleton (since := "2026-01-04")]

          Alias of Metric.ediam_singleton.


          The extended diameter of a singleton vanishes

          @[deprecated Metric.ediam_zero (since := "2026-01-04")]

          Alias of Metric.ediam_zero.

          @[deprecated Metric.ediam_one (since := "2026-01-04")]
          theorem EMetric.diam_one {X : Type u_2} [PseudoEMetricSpace X] [One X] :

          Alias of Metric.ediam_one.

          @[deprecated Metric.ediam_iUnion_mem_option (since := "2026-01-04")]
          theorem EMetric.diam_iUnion_mem_option {X : Type u_2} [PseudoEMetricSpace X] {ι : Type u_3} (o : Option ι) (s : ιSet X) :
          Metric.ediam (⋃ io, s i) = io, Metric.ediam (s i)

          Alias of Metric.ediam_iUnion_mem_option.

          @[deprecated Metric.ediam_insert (since := "2026-01-04")]
          theorem EMetric.diam_insert {X : Type u_2} {s : Set X} {x : X} [PseudoEMetricSpace X] :
          Metric.ediam (insert x s) = max (⨆ ys, edist x y) (Metric.ediam s)

          Alias of Metric.ediam_insert.

          @[deprecated Metric.ediam_pair (since := "2026-01-04")]
          theorem EMetric.diam_pair {X : Type u_2} {x y : X} [PseudoEMetricSpace X] :

          Alias of Metric.ediam_pair.

          @[deprecated Metric.ediam_triple (since := "2026-01-04")]
          theorem EMetric.diam_triple {X : Type u_2} {x y z : X} [PseudoEMetricSpace X] :
          Metric.ediam {x, y, z} = max (max (edist x y) (edist x z)) (edist y z)

          Alias of Metric.ediam_triple.

          @[deprecated Metric.ediam_mono (since := "2026-01-04")]
          theorem EMetric.diam_mono {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : s t) :

          Alias of Metric.ediam_mono.


          The extended diameter is monotonous with respect to inclusion

          @[deprecated Metric.ediam_union_le_add_edist (since := "2026-01-04")]
          theorem EMetric.diam_union {X : Type u_2} {s t : Set X} {x y : X} [PseudoEMetricSpace X] (xs : x s) (yt : y t) :

          Alias of Metric.ediam_union_le_add_edist.


          The extended diameter of a union is controlled by the diameter of the sets, and the edistance between two points in the sets.

          @[deprecated Metric.ediam_union_le (since := "2026-01-04")]
          theorem EMetric.diam_union' {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : (s t).Nonempty) :

          Alias of Metric.ediam_union_le.


          If two sets have nonempty intersection, then the extended diameter of their union is estimated from above by the sum of their union.

          @[deprecated Metric.ediam_closedEBall_le (since := "2026-01-04")]

          Alias of Metric.ediam_closedEBall_le.

          @[deprecated Metric.ediam_eball_le (since := "2026-01-04")]
          theorem EMetric.diam_ball {X : Type u_2} {x : X} [PseudoEMetricSpace X] {r : ENNReal} :

          Alias of Metric.ediam_eball_le.

          @[deprecated Metric.ediam_pi_le_of_le (since := "2026-01-04")]
          theorem EMetric.diam_pi_le_of_le {ι : Type u_3} {X : ιType u_4} [Fintype ι] [(i : ι) → PseudoEMetricSpace (X i)] {s : (i : ι) → Set (X i)} {c : ENNReal} (h : ∀ (b : ι), Metric.ediam (s b) c) :

          Alias of Metric.ediam_pi_le_of_le.

          @[deprecated Metric.ediam_eq_zero_iff (since := "2026-01-04")]

          Alias of Metric.ediam_eq_zero_iff.

          @[deprecated Metric.ediam_pos_iff (since := "2026-01-04")]
          theorem EMetric.diam_pos_iff {X : Type u_2} {s : Set X} [EMetricSpace X] :

          Alias of Metric.ediam_pos_iff.

          @[deprecated Metric.ediam_pos_iff' (since := "2026-01-04")]
          theorem EMetric.diam_pos_iff' {X : Type u_2} {s : Set X} [EMetricSpace X] :
          0 < Metric.ediam s xs, ys, x y

          Alias of Metric.ediam_pos_iff'.