Documentation

Mathlib.Analysis.Normed.Operator.Compact

Compact operators #

In this file we define compact linear operators between two topological vector spaces (TVS).

Main definitions #

Main statements #

Implementation details #

We define IsCompactOperator as a predicate, because the space of compact operators inherits all of its structure from the space of continuous linear maps (e.g we want to have the usual operator norm on compact operators).

The two natural options then would be to make it a predicate over linear maps or continuous linear maps. Instead we define it as a predicate over bare functions, although it really only makes sense for linear functions, because Lean is really good at finding coercions to bare functions (whereas coercing from continuous linear maps to linear maps often needs type ascriptions).

References #

Tags #

Compact operator

def IsCompactOperator {M₁ : Type u_1} {Mβ‚‚ : Type u_2} [Zero M₁] [TopologicalSpace M₁] [TopologicalSpace Mβ‚‚] (f : M₁ β†’ Mβ‚‚) :

A compact operator between two topological vector spaces. This definition is usually given as "there exists a neighborhood of zero whose image is contained in a compact set", but we choose a definition which involves fewer existential quantifiers and replaces images with preimages.

We prove the equivalence in isCompactOperator_iff_exists_mem_nhds_image_subset_compact.

Equations
    Instances For
      theorem isCompactOperator_zero {M₁ : Type u_1} {Mβ‚‚ : Type u_2} [Zero M₁] [TopologicalSpace M₁] [TopologicalSpace Mβ‚‚] [Zero Mβ‚‚] :
      theorem isCompactOperator_iff_exists_mem_nhds_image_subset_compact {M₁ : Type u_2} {Mβ‚‚ : Type u_3} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] (f : M₁ β†’ Mβ‚‚) :
      IsCompactOperator f ↔ βˆƒ V ∈ nhds 0, βˆƒ (K : Set Mβ‚‚), IsCompact K ∧ f '' V βŠ† K
      theorem isCompactOperator_iff_exists_mem_nhds_isCompact_closure_image {M₁ : Type u_2} {Mβ‚‚ : Type u_3} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [T2Space Mβ‚‚] (f : M₁ β†’ Mβ‚‚) :
      IsCompactOperator f ↔ βˆƒ V ∈ nhds 0, IsCompact (closure (f '' V))
      theorem IsCompactOperator.image_subset_compact_of_isVonNBounded {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [Module π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) {S : Set M₁} (hS : Bornology.IsVonNBounded π•œβ‚ S) :
      βˆƒ (K : Set Mβ‚‚), IsCompact K ∧ ⇑f '' S βŠ† K
      theorem IsCompactOperator.isCompact_closure_image_of_isVonNBounded {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [Module π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) {S : Set M₁} (hS : Bornology.IsVonNBounded π•œβ‚ S) :
      IsCompact (closure (⇑f '' S))
      theorem IsCompactOperator.image_subset_compact_of_bounded {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) {S : Set M₁} (hS : Bornology.IsBounded S) :
      βˆƒ (K : Set Mβ‚‚), IsCompact K ∧ ⇑f '' S βŠ† K
      theorem IsCompactOperator.isCompact_closure_image_of_bounded {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) {S : Set M₁} (hS : Bornology.IsBounded S) :
      IsCompact (closure (⇑f '' S))
      theorem IsCompactOperator.image_ball_subset_compact {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) (r : ℝ) :
      βˆƒ (K : Set Mβ‚‚), IsCompact K ∧ ⇑f '' Metric.ball 0 r βŠ† K
      theorem IsCompactOperator.image_closedBall_subset_compact {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) (r : ℝ) :
      βˆƒ (K : Set Mβ‚‚), IsCompact K ∧ ⇑f '' Metric.closedBall 0 r βŠ† K
      theorem IsCompactOperator.isCompact_closure_image_ball {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) (r : ℝ) :
      theorem IsCompactOperator.isCompact_closure_image_closedBall {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) (r : ℝ) :
      theorem isCompactOperator_iff_image_ball_subset_compact {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] (f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚) {r : ℝ} (hr : 0 < r) :
      IsCompactOperator ⇑f ↔ βˆƒ (K : Set Mβ‚‚), IsCompact K ∧ ⇑f '' Metric.ball 0 r βŠ† K
      theorem isCompactOperator_iff_image_closedBall_subset_compact {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] (f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚) {r : ℝ} (hr : 0 < r) :
      IsCompactOperator ⇑f ↔ βˆƒ (K : Set Mβ‚‚), IsCompact K ∧ ⇑f '' Metric.closedBall 0 r βŠ† K
      theorem isCompactOperator_iff_isCompact_closure_image_ball {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] (f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚) {r : ℝ} (hr : 0 < r) :
      theorem isCompactOperator_iff_isCompact_closure_image_closedBall {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [SeminormedRing π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] (f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚) {r : ℝ} (hr : 0 < r) :
      theorem IsCompactOperator.smul {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] {S : Type u_6} [Monoid S] [DistribMulAction S Mβ‚‚] [ContinuousConstSMul S Mβ‚‚] {f : M₁ β†’ Mβ‚‚} (hf : IsCompactOperator f) (c : S) :
      theorem IsCompactOperator.smul_unit_iff {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] {S : Type u_6} [Monoid S] [DistribMulAction S Mβ‚‚] [ContinuousConstSMul S Mβ‚‚] {f : M₁ β†’ Mβ‚‚} {c : SΛ£} :
      theorem IsCompactOperator.smul_isUnit_iff {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] {S : Type u_6} [Monoid S] [DistribMulAction S Mβ‚‚] [ContinuousConstSMul S Mβ‚‚] {f : M₁ β†’ Mβ‚‚} {c : S} (hc : IsUnit c) :
      theorem IsCompactOperator.smul_iff {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] {S : Type u_6} [Group S] [DistribMulAction S Mβ‚‚] [ContinuousConstSMul S Mβ‚‚] {f : M₁ β†’ Mβ‚‚} (c : S) :
      theorem IsCompactOperator.smul_iffβ‚€ {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] {S : Type u_6} [GroupWithZero S] [DistribMulAction S Mβ‚‚] [ContinuousConstSMul S Mβ‚‚] {f : M₁ β†’ Mβ‚‚} {c : S} (hc : c β‰  0) :
      theorem IsCompactOperator.add {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [ContinuousAdd Mβ‚‚] {f g : M₁ β†’ Mβ‚‚} (hf : IsCompactOperator f) (hg : IsCompactOperator g) :
      theorem IsCompactOperator.neg {M₁ : Type u_3} {Mβ‚„ : Type u_5} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚„] [AddCommGroup Mβ‚„] [ContinuousNeg Mβ‚„] {f : M₁ β†’ Mβ‚„} (hf : IsCompactOperator f) :
      theorem IsCompactOperator.sub {M₁ : Type u_3} {Mβ‚„ : Type u_5} [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚„] [AddCommGroup Mβ‚„] [IsTopologicalAddGroup Mβ‚„] {f g : M₁ β†’ Mβ‚„} (hf : IsCompactOperator f) (hg : IsCompactOperator g) :
      def compactOperator {R₁ : Type u_1} {Rβ‚„ : Type u_2} [Semiring R₁] [CommSemiring Rβ‚„] (σ₁₄ : R₁ β†’+* Rβ‚„) (M₁ : Type u_3) (Mβ‚„ : Type u_5) [TopologicalSpace M₁] [AddCommMonoid M₁] [TopologicalSpace Mβ‚„] [AddCommGroup Mβ‚„] [Module R₁ M₁] [Module Rβ‚„ Mβ‚„] [ContinuousConstSMul Rβ‚„ Mβ‚„] [IsTopologicalAddGroup Mβ‚„] :
      Submodule Rβ‚„ (M₁ β†’SL[σ₁₄] Mβ‚„)

      The submodule of compact continuous linear maps.

      Equations
        Instances For
          theorem IsCompactOperator.comp_clm {R₁ : Type u_1} {Rβ‚‚ : Type u_2} [Semiring R₁] [Semiring Rβ‚‚] {σ₁₂ : R₁ β†’+* Rβ‚‚} {M₁ : Type u_4} {Mβ‚‚ : Type u_5} {M₃ : Type u_6} [TopologicalSpace M₁] [TopologicalSpace Mβ‚‚] [TopologicalSpace M₃] [AddCommMonoid M₁] [Module R₁ M₁] [AddCommMonoid Mβ‚‚] [Module Rβ‚‚ Mβ‚‚] {f : Mβ‚‚ β†’ M₃} (hf : IsCompactOperator f) (g : M₁ β†’SL[σ₁₂] Mβ‚‚) :
          theorem IsCompactOperator.continuous_comp {M₁ : Type u_4} {Mβ‚‚ : Type u_5} {M₃ : Type u_6} [TopologicalSpace M₁] [TopologicalSpace Mβ‚‚] [TopologicalSpace M₃] [AddCommMonoid M₁] {f : M₁ β†’ Mβ‚‚} (hf : IsCompactOperator f) {g : Mβ‚‚ β†’ M₃} (hg : Continuous g) :
          theorem IsCompactOperator.clm_comp {Rβ‚‚ : Type u_2} {R₃ : Type u_3} [Semiring Rβ‚‚] [Semiring R₃] {σ₂₃ : Rβ‚‚ β†’+* R₃} {M₁ : Type u_4} {Mβ‚‚ : Type u_5} {M₃ : Type u_6} [TopologicalSpace M₁] [TopologicalSpace Mβ‚‚] [TopologicalSpace M₃] [AddCommMonoid M₁] [AddCommMonoid Mβ‚‚] [Module Rβ‚‚ Mβ‚‚] [AddCommMonoid M₃] [Module R₃ M₃] {f : M₁ β†’ Mβ‚‚} (hf : IsCompactOperator f) (g : Mβ‚‚ β†’SL[σ₂₃] M₃) :
          theorem IsCompactOperator.codRestrict {Rβ‚‚ : Type u_1} [Semiring Rβ‚‚] {M₁ : Type u_2} {Mβ‚‚ : Type u_3} [TopologicalSpace M₁] [TopologicalSpace Mβ‚‚] [AddCommMonoid M₁] [AddCommMonoid Mβ‚‚] [Module Rβ‚‚ Mβ‚‚] {f : M₁ β†’ Mβ‚‚} (hf : IsCompactOperator f) {V : Submodule Rβ‚‚ Mβ‚‚} (hV : βˆ€ (x : M₁), f x ∈ V) (h_closed : IsClosed ↑V) :
          theorem IsCompactOperator.restrict {R₁ : Type u_1} [Semiring R₁] {M₁ : Type u_3} [TopologicalSpace M₁] [AddCommMonoid M₁] [Module R₁ M₁] {f : M₁ β†’β‚—[R₁] M₁} (hf : IsCompactOperator ⇑f) {V : Submodule R₁ M₁} (hV : βˆ€ v ∈ V, f v ∈ V) (h_closed : IsClosed ↑V) :

          If a compact operator preserves a closed submodule, its restriction to that submodule is compact.

          Note that, following mathlib's convention in linear algebra, restrict designates the restriction of an endomorphism f : E β†’β‚— E to an endomorphism f' : β†₯V β†’β‚— β†₯V. To prove that the restriction f' : β†₯U β†’β‚›β‚— β†₯V of a compact operator f : E β†’β‚›β‚— F is compact, apply IsCompactOperator.codRestrict to f ∘ U.subtypeL, which is compact by IsCompactOperator.comp_clm.

          theorem IsCompactOperator.restrict' {Rβ‚‚ : Type u_2} [Semiring Rβ‚‚] {Mβ‚‚ : Type u_4} [UniformSpace Mβ‚‚] [AddCommMonoid Mβ‚‚] [Module Rβ‚‚ Mβ‚‚] [T0Space Mβ‚‚] {f : Mβ‚‚ β†’β‚—[Rβ‚‚] Mβ‚‚} (hf : IsCompactOperator ⇑f) {V : Submodule Rβ‚‚ Mβ‚‚} (hV : βˆ€ v ∈ V, f v ∈ V) [hcomplete : CompleteSpace β†₯V] :

          If a compact operator preserves a complete submodule, its restriction to that submodule is compact.

          Note that, following mathlib's convention in linear algebra, restrict designates the restriction of an endomorphism f : E β†’β‚— E to an endomorphism f' : β†₯V β†’β‚— β†₯V. To prove that the restriction f' : β†₯U β†’β‚›β‚— β†₯V of a compact operator f : E β†’β‚›β‚— F is compact, apply IsCompactOperator.codRestrict to f ∘ U.subtypeL, which is compact by IsCompactOperator.comp_clm.

          theorem IsCompactOperator.continuous {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [NontriviallyNormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommGroup Mβ‚‚] [Module π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [IsTopologicalAddGroup M₁] [ContinuousConstSMul π•œβ‚ M₁] [IsTopologicalAddGroup Mβ‚‚] [ContinuousSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) :
          Continuous ⇑f
          def ContinuousLinearMap.mkOfIsCompactOperator {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [NontriviallyNormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommGroup Mβ‚‚] [Module π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [IsTopologicalAddGroup M₁] [ContinuousConstSMul π•œβ‚ M₁] [IsTopologicalAddGroup Mβ‚‚] [ContinuousSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) :
          M₁ β†’SL[σ₁₂] Mβ‚‚

          Upgrade a compact LinearMap to a ContinuousLinearMap.

          Equations
            Instances For
              @[simp]
              theorem ContinuousLinearMap.mkOfIsCompactOperator_to_linearMap {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [NontriviallyNormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommGroup Mβ‚‚] [Module π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [IsTopologicalAddGroup M₁] [ContinuousConstSMul π•œβ‚ M₁] [IsTopologicalAddGroup Mβ‚‚] [ContinuousSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) :
              @[simp]
              theorem ContinuousLinearMap.coe_mkOfIsCompactOperator {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [NontriviallyNormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommGroup Mβ‚‚] [Module π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [IsTopologicalAddGroup M₁] [ContinuousConstSMul π•œβ‚ M₁] [IsTopologicalAddGroup Mβ‚‚] [ContinuousSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) :
              ⇑(mkOfIsCompactOperator hf) = ⇑f
              theorem ContinuousLinearMap.mkOfIsCompactOperator_mem_compactOperator {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [NontriviallyNormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [TopologicalSpace M₁] [AddCommGroup M₁] [TopologicalSpace Mβ‚‚] [AddCommGroup Mβ‚‚] [Module π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [IsTopologicalAddGroup M₁] [ContinuousConstSMul π•œβ‚ M₁] [IsTopologicalAddGroup Mβ‚‚] [ContinuousSMul π•œβ‚‚ Mβ‚‚] {f : M₁ β†’β‚›β‚—[σ₁₂] Mβ‚‚} (hf : IsCompactOperator ⇑f) :
              mkOfIsCompactOperator hf ∈ compactOperator σ₁₂ M₁ Mβ‚‚
              theorem isClosed_setOf_isCompactOperator {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [NormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [AddCommGroup Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [UniformSpace Mβ‚‚] [IsUniformAddGroup Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] [CompleteSpace Mβ‚‚] :
              IsClosed {f : M₁ β†’SL[σ₁₂] Mβ‚‚ | IsCompactOperator ⇑f}

              The set of compact operators from a normed space to a complete topological vector space is closed.

              theorem compactOperator_topologicalClosure {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NontriviallyNormedField π•œβ‚] [NormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_3} {Mβ‚‚ : Type u_4} [SeminormedAddCommGroup M₁] [AddCommGroup Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [UniformSpace Mβ‚‚] [IsUniformAddGroup Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] [CompleteSpace Mβ‚‚] :
              (compactOperator σ₁₂ M₁ Mβ‚‚).topologicalClosure = compactOperator σ₁₂ M₁ Mβ‚‚
              theorem isCompactOperator_of_tendsto {ΞΉ : Type u_1} {π•œβ‚ : Type u_2} {π•œβ‚‚ : Type u_3} [NontriviallyNormedField π•œβ‚] [NormedField π•œβ‚‚] {σ₁₂ : π•œβ‚ β†’+* π•œβ‚‚} {M₁ : Type u_4} {Mβ‚‚ : Type u_5} [SeminormedAddCommGroup M₁] [AddCommGroup Mβ‚‚] [NormedSpace π•œβ‚ M₁] [Module π•œβ‚‚ Mβ‚‚] [UniformSpace Mβ‚‚] [IsUniformAddGroup Mβ‚‚] [ContinuousConstSMul π•œβ‚‚ Mβ‚‚] [T2Space Mβ‚‚] [CompleteSpace Mβ‚‚] {l : Filter ΞΉ} [l.NeBot] {F : ΞΉ β†’ M₁ β†’SL[σ₁₂] Mβ‚‚} {f : M₁ β†’SL[σ₁₂] Mβ‚‚} (hf : Filter.Tendsto F l (nhds f)) (hF : βˆ€αΆ  (i : ΞΉ) in l, IsCompactOperator ⇑(F i)) :